Skip to main content
Log in

sp2/sp3 bonding ratio dependence of the band-gap in graphene oxide

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Although the band-gap in pure graphene is zero, the oxygenated graphene could have a considerable band-gap. The D/G peak intensity ratio is known as a measure of the size of sp3sp2 domains in graphene oxide (GO) sheets and determines the band-gap in GO sheets. Characterization results showed that the photoluminescence (PL) spectra of GO suspensions has a peak at ~604 nm and also the I(D)/I(G) intensity ratio of GO suspensions is 1.73. After reduction, a redshift appeared at PL spectrum (at 650 nm) and the I(D)/I(G) intensity ratio decrease to 1.26. Our results showed that the band-gap in GO is related to the I(D)/I(G) intensity ratio of GO suspensions and offers a mechanism for measuring the band gap according to Raman spectra. Moreover, GO is fluorescent over a broad range of wavelengths and can be used in the biological application.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. C. Lee, X. Wei, J.W. Kysar et al., Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  3. O. Akhavan, E. Ghaderi, A. Akhavan, Biomaterials 33, 8017 (2012)

    Article  Google Scholar 

  4. H. Nagai, M. Nakano, K. Yoneda et al., Chem. Phys. Lett. 477, 355 (2009)

    Article  ADS  Google Scholar 

  5. A. Missaoui, J.J. Khabthani, N.E. Jaidane, D. Mayou, G.T. de Laissardière, Eur. Phys. J. B 90, 75 (2017)

    Article  ADS  Google Scholar 

  6. A. Mathkar, D. Tozier, P. Cox et al., J. Phys. Chem. Lett. 3, 986 (2012)

    Article  Google Scholar 

  7. H.Y. Mao, Y.H. Lu, J.D. Lin et al., Prog. Surf. Sci. 88, 132 (2013)

    Article  ADS  Google Scholar 

  8. Z. Sun, D.K. James, J.M. Tour, J. Phys. Chem. Lett. 2, 2425 (2011)

    Article  Google Scholar 

  9. J. Lee, G. Kim, Carbon 122, 281 (2017)

    Article  Google Scholar 

  10. Z. Wang, S. Qin, C. Wang, Eur. Phys. J. B 87, 88 (2014)

    Article  ADS  Google Scholar 

  11. Q.L. Meng, H. Liu, Z. Huang et al., Chin. Chem. Lett. 29, 711 (2018)

    Article  Google Scholar 

  12. I.Y. Sagalianov, T.M. Radchenko, Y.I. Prylutskyy et al., Eur. Phys. J. B 90, 112 (2017)

    Article  ADS  Google Scholar 

  13. K.P. Loh, Q. Bao, G. Eda et al., Nat. Chem. 2, 1015 (2010)

    Article  Google Scholar 

  14. E. Morales-Narváez, A. Merkoçi, Adv. Mater. 24, 3298 (2012)

    Article  Google Scholar 

  15. M.T. Hasan, B.J. Senger, P. Mulford et al., Nanotechnology 28, 065705 (2017)

    Article  ADS  Google Scholar 

  16. A. Lerf, H. He, M. Forster et al., J. Phys. Chem. B 102, 4477 (1998)

    Article  Google Scholar 

  17. D.R. Dreyer, S. Park, C.W. Bielawski et al., Chem. Soc. Rev. 39, 228 (2010)

    Article  Google Scholar 

  18. Z. Luo, P.M. Vora, E.J. Mele et al., Appl. Phys. Lett. 94, 111909 (2009)

    Article  ADS  Google Scholar 

  19. S. Wang, Y. Dong, C. He et al., RSC Adv. 7, 53643 (2017)

    Article  Google Scholar 

  20. M.Y. Han, B. Özyilmaz, Y. Zhang et al., Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  21. W. Oswald, Z. Wu, Phys. Rev. B 85, 115431 (2012)

    Article  ADS  Google Scholar 

  22. R. Ye, Z. Peng, A. Metzger et al., ACS Appl. Mater. Interfaces 7, 7041 (2015)

    Article  Google Scholar 

  23. D. Wei, Y. Liu, Y. Wang et al., Nano Lett. 9, 1752 (2009)

    Article  ADS  Google Scholar 

  24. C.H. Lui, Z. Li, K.F. Mak et al., Nat. Phys. 7, 944 (2011)

    Article  Google Scholar 

  25. E.V. Castro, K.S. Novoselov, S.V. Morozov et al., Phys. Rev. Lett. 99, 216802 (2007)

    Article  ADS  Google Scholar 

  26. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  27. M. Rastgoo, S.M. Tabatabaei, M. Fathipour, Eur. Phys. J. B 91, 121 (2018)

    Article  ADS  Google Scholar 

  28. W.G. Ma, S.Q. Lu, D.B. Zhu et al., Chin. Chem. Lett. 25, 482 (2014)

    Article  Google Scholar 

  29. A. Paul, A. Hasan, H.A. Kindi, A.K. Gaharwar et al., ACS Nano 8, 8050 (2014)

    Article  Google Scholar 

  30. R. Tandel, N. Teradal, A. Satpati et al., Chin. Chem. Lett. 28, 1429 (2017)

    Article  Google Scholar 

  31. O. Akhavan, E. Ghaderi, R. Rahighi, ACS Nano 6, 2904 (2012)

    Article  Google Scholar 

  32. K. Jin, H. Gao, L. Lai et al., J. Lumin. 197, 147 (2018)

    Article  Google Scholar 

  33. O. Akhavan, E. Ghaderi, ACS Nano 4, 5731 (2010)

    Article  Google Scholar 

  34. O. Akhavan, E. Ghaderi, M. Shahsavar, Carbon 59, 200 (2013)

    Article  Google Scholar 

  35. O. Akhavan, M. Kalaee, Z.S. Alavi et al., Carbon 50, 3015 (2012)

    Article  Google Scholar 

  36. H.C. Schniepp, J.L. Li, M.J. McAllister et al., J. Phys. Chem. B 110, 8535 (2006)

    Article  Google Scholar 

  37. M.J. McAllister, J.L. Li, D.H. Adamson et al., Chem. Mater. 19, 4396 (2007)

    Article  Google Scholar 

  38. A.C. Ferrari, M.B. Denis, Nat. Nanotechnol. 8, 235 (2013)

    Article  ADS  Google Scholar 

  39. K.N. Kudin, B. Ozbas, H.C. Schniepp et al., Nano Lett. 8, 36 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Akbari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, E., Akbari, I. & Ebrahimi, M.R. sp2/sp3 bonding ratio dependence of the band-gap in graphene oxide. Eur. Phys. J. B 92, 71 (2019). https://doi.org/10.1140/epjb/e2019-90675-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90675-y

Keywords

Navigation