Skip to main content
Log in

Criticality of the low-frequency conductivity for the bilayer quantum Heisenberg model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The criticality of the low-frequency conductivity for the bilayer quantum Heisenberg model was investigated numerically. The dynamical conductivity (associated with the O(3) symmetry) displays the inductor σ(ω) = (iωL)−1 and capacitor iωC behaviors for the ordered and disordered phases, respectively. Both constants, C and L, have the same scaling dimension as that of the reciprocal paramagnetic gap Δ−1. Then, there arose a question to fix the set of critical amplitude ratios among them. So far, the O(2) case has been investigated in the context of the boson-vortex duality. In this paper, we employ the exact diagonalization method, which enables us to calculate the paramagnetic gap Δ directly. Thereby, the set of critical amplitude ratios as to C, L and Δ are estimated with the finite-size-scaling analysis for the cluster with N ≤ 34 spins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Gazit, D. Podolsky, A. Auerbach, D.P. Arovas, Phys. Rev. B 88, 235108 (2013)

    Article  ADS  Google Scholar 

  2. A.V. Chubukov, S. Sachdev, J. Ye, Phys. Rev. B 49, 11919 (1994)

    Article  ADS  Google Scholar 

  3. F. Rose, N. Dupuis, Phys. Rev. B 95, 014513 (2017)

    Article  ADS  Google Scholar 

  4. M. Lohöfer, T. Coletta, D.G. Joshi, F.F. Assaad, M. Vojta, S. Wessel, F. Mila, Phys. Rev. B 92, 245137 (2015)

    Article  ADS  Google Scholar 

  5. F. Rose, F. Léonard, N. Dupuis, Phys. Rev. B 91, 224501 (2015)

    Article  ADS  Google Scholar 

  6. Y.T. Katan, D. Podolsky, Phys. Rev. B 91, 075132 (2015)

    Article  ADS  Google Scholar 

  7. Y. Nishiyama, Eur. Phys. J. B 89, 31 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Rançon, N. Dupuis, Phys. Rev. B 89, 180501 (2014)

    Article  ADS  Google Scholar 

  9. M. Stone, P.R. Thomas, Phys. Rev. Lett. 41, 351 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  10. M.P.A. Fisher, D.H. Lee, Phys. Rev. B 39, 2756 (1989)

    Article  ADS  Google Scholar 

  11. X.G. Wen, A. Zee, Int. J. Mod. Phys. B 04, 437 (1990)

    Article  ADS  Google Scholar 

  12. S. Gazit, D. Podolsky, A. Auerbach, Phys. Rev. Lett. 113, 240601 (2014)

    Article  ADS  Google Scholar 

  13. J. Corson, R. Mallozz, J. Orenstein, J.N. Eckstein, I. Bozovic, Nature 398, 221 (1999)

    Article  ADS  Google Scholar 

  14. R.W. Crane, N.P. Armitage, A. Johansson, G. Sambandamurthy, D. Shahar, G. Grüner, Phys. Rev. B 75, 094506 (2007)

    Article  ADS  Google Scholar 

  15. J.F. Sherson, C. Eeitenberg, M. Endres, M. Cheneau, I. Bloch, S. Kuhr, Nature 467, 68 (2010)

    Article  ADS  Google Scholar 

  16. M. Troyer, S. Sachdev, Phys. Rev. Lett. 81, 5418 (1998)

    Article  ADS  Google Scholar 

  17. M. Hasenbusch, J. Phys. A 34, 8221 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari, Phys. Rev. E 65, 144520 (2002)

    Article  Google Scholar 

  19. A. Rançson, O. Kdio, N. Dupuis, P. Lecheminant, Phys. Rev. E 88, 012113 (2013)

    Article  ADS  Google Scholar 

  20. M. Sentef, M. Kollar, A.P. Kampf, Phys. Rev. B 75, 214403 (2007)

    Article  ADS  Google Scholar 

  21. T. Pardini, R.R.P. Singh, A. Katanin, O.P. Sushkov, Phys. Rev. B 78, 024439 (2008)

    Article  ADS  Google Scholar 

  22. Y. Kubo, S. Kurihara, J. Phys. Soc. Jpn. 82, 113601 (2013)

    Article  ADS  Google Scholar 

  23. Z. Chen, T. Datta, D.-X. Yao, Eur. Phys. J. B 86, 63 (2013)

    Article  ADS  Google Scholar 

  24. M.A. Novotny, J. Appl. Phys. 67, 5448 (1990)

    Article  ADS  Google Scholar 

  25. A.W. Sandvik, Phys. Rev. B 56, 11678 (1997)

    Article  ADS  Google Scholar 

  26. E.R. Gagliano, C.A. Balseiro, Phys. Rev. Lett. 59, 2999 (1987)

    Article  ADS  Google Scholar 

  27. P. Nozières, D. Pines, Nuovo Cimento 9 (1958) 470

    Article  Google Scholar 

  28. D. Pekker, C.M. Varma, Annu. Rev. Condens. Matter Phys. 6, 269 (2015)

    Article  ADS  Google Scholar 

  29. J.-P. Blaizot, R. Méndez-Galain, N. Wschebor, Phys. Lett. B 632, 571 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. K. Damle, S. Sachdev, Phys. Rev. B 56, 8714 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Nishiyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiyama, Y. Criticality of the low-frequency conductivity for the bilayer quantum Heisenberg model. Eur. Phys. J. B 91, 69 (2018). https://doi.org/10.1140/epjb/e2018-80707-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-80707-7

Keywords

Navigation