Skip to main content

Advertisement

Log in

Structural and electronic properties of solid naphthalene under pressure: density functional calculations

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The pressure effect on the geometrical and electronic structures of crystalline naphthalene is calculated up to 30 GPa by performing density functional calculations. The lattice parameters a, b, and c, decrease by 1.77 Å (–20.4%), 0.85 Å (–14.1%), and 0.91 Å (–8.2%), respectively, while the monoclinic angle β increases by 3.95° in this pressure region. At the highest pressure of 30 GPa the unit cell volume decreases by 62.7%. The detailed analysis of the molecular arrangement within crystal structure reveals that the molecular motion becomes more and more localized, and hints towards the evolution of intermolecular interaction with pressure. Moreover, the electronic structure of naphthalene under high pressure is also discussed. A pressure induced decrease of the band gap is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E.A. Silinsh, V. Capek, Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena (Springer-Verlag, Berlin, Heidelberg, New York, 1994)

  2. R. Farchioni, G. Grosso, Organic Electronic Materials: Conjugated Polymers and Low Molecular Weight Organic Solids (Springer, Berlin, 2001)

  3. L.J. Allamandola, S.A. Sandford, B. Wopenka, Science 237, 56 (1987)

    Article  ADS  Google Scholar 

  4. A.I. Kitaigorodsky, Molecular crystals and molecules (Academic press, 1973)

  5. R.B. Aust, W.H. Bentley, H.G. Drickamer, J. Chem. Phys. 41, 1856 (1964)

    Article  ADS  Google Scholar 

  6. Q.W. Huang, G.H. Zhong, J. Zhang, X.M. Zhao, C. Zhang, H.Q. Lin, X.J. Chen, J. Chem. Phys. 140, 114301 (2014)

    Article  ADS  Google Scholar 

  7. T. Kambe, X. He, Y. Takahashi, Y. Yamanari, K. Teranishi, H. Mitamura, S. Shibasaki, K. Tomita, R. Eguchi, H. Goto, Y. Takabayashi, T. Kato, A. Fujiwara, T. Kariyado, H. Aoki, Y. Kubozono, Phys. Rev. B 86, 214507 (2012)

    Article  ADS  Google Scholar 

  8. I. Harada, T. Shimanouchi, J. Chem. Phys. 44, 2016 (1966)

    Article  ADS  Google Scholar 

  9. E.S. Kadantsev, M.J. Stott, A. Rubio, J. Chem. Phys. 124, 134901 (2006)

    Article  ADS  Google Scholar 

  10. S. Block, C.E. Weir, G.J. Piermarini, Science 169, 586 (1970)

    Article  ADS  Google Scholar 

  11. M.A. McHugh, J.J. Watkins, B.T. Doyle, V.J. Krukonis, Ind. Eng. Chem. Res. 27, 1025 (1988)

    Article  Google Scholar 

  12. G. Heimel, D. Somitsch, P. Knoll, E. Zojer, J. Chem. Phys. 116, 10921 (2002)

    Article  ADS  Google Scholar 

  13. K.P. Meletov, Phys. Solid State 55, 581 (2013)

    Article  ADS  Google Scholar 

  14. A.Y. Likhacheva, S.V. Rashchenko, A.D. Chanyshev, T.M. Inerbaev, K.D. Litasov, D.S. Kilin, J. Chem. Phys. 140, 164508 (2014).

    Article  ADS  Google Scholar 

  15. A.Y. Likhacheva, S.V. Rashchenko, K.D. Litasov, J. Appl. Cryst. 47, 984 (2014)

    Article  Google Scholar 

  16. V. Coropceanu, R.S. Sánchez-Carrera, P. Paramonov, G.M. Day, J.L. Brédas, J. Phys. Chem. C 113, 4679 (2009)

    Article  Google Scholar 

  17. B. Schatschneider, S. Monaco, A. Tkatchenko, J.J. Liang, J. Phys. Chem. A 117, 8323 (2013)

    Article  Google Scholar 

  18. K. Hummer, C. Ambrosch-Draxl, Phys. Rev. B 72, 205205 (2005)

    Article  ADS  Google Scholar 

  19. I.A. Fedorov, Y.N. Zhuravlev, V.P. Berveno, Phys. Chem. Chem. Phys. 13, 5679 (2011)

    Article  Google Scholar 

  20. Y.N. Zhuravlev, I.A. Fedorov, M.Y. Kiyamov, J. Struct. Chem. 53, 417 (2012)

    Article  Google Scholar 

  21. G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  22. K. Lee, E.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Phys. Rev. B 82, 081101 (2010)

    Article  ADS  Google Scholar 

  23. T. Suthana, N. Rajesha, P. Dhanaraja, C. Mahadevan, Spectrochim. Acta Part A 75, 69 (2010)

    Article  ADS  Google Scholar 

  24. P.W. Bridgman, Proc. Am. Acad. Arts Sci. 77, 129 (1949)

    Article  Google Scholar 

  25. S. Block, C.E. Weir, G.J. Piermarini, Science 169, 586 (1970)

    Article  ADS  Google Scholar 

  26. C.P. Brock, J.D. Dunitz, Acta Crystallogr. B 38, 2218 (1982)

    Article  Google Scholar 

  27. B. Schatschneider, J.J. Liang, A.M. Reilly, N. Marom, G.X. Zhang, A. Tkatchenko, Phys. Rev. B 87, 060104 (2013)

    Article  ADS  Google Scholar 

  28. B. Schatschneider, S. Monaco, J.J. Liang, A. Tkatchenko, J. Phys. Chem. C 118, 19964 (2014)

    Article  Google Scholar 

  29. F.P.A. Fabbiani, D.R. Allan, S. Parsons, C.R. Pulham, Acta Crystallogr. B 62, 826 (2006)

    Article  Google Scholar 

  30. A.J. Kitaigorodsky, in Molekiilkristalle (Akademie, Berlin, 1979), Vol. 177

  31. A.I. Kitaigorodsky, Molecular Crystals and Molecules (Academic, New York, 1973)

  32. V.A. Venturo, P.M. Felker, J. Chem. Phys. 99, 748 (1993)

    Article  ADS  Google Scholar 

  33. H. Saigusa, S. Sun, E.C. Lim, J. Phys. Chem. 96, 2083 (1992)

    Article  Google Scholar 

  34. K. Murata, K. Yokogawa, S. Arumugam, H. Yoshino, Crystals 2, 1460 (2012)

    Article  Google Scholar 

  35. S. Katayama, A. Kobayashi, Y. Suzumura, J. Phys. Soc. Jpn 75, 054705 (2006)

    Article  ADS  Google Scholar 

  36. M. Chandrasekhar, S. Guha, W. Graupner, Adv. Mater. 13, 613 (2001)

    Article  Google Scholar 

  37. P.F. Jones, M. Nicol, J. Chem. Phys. 48, 5440 (1968)

    Article  ADS  Google Scholar 

  38. M. Nicol, M. Vernon, J.T. Woo, J. Chem. Phys. 63, 1992 (1975)

    Article  ADS  Google Scholar 

  39. S.D. Hamann, High Temp. High Pressures 10, 503 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-Ping Xiao or Zhi Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, LP., Zeng, Z. & Chen, XJ. Structural and electronic properties of solid naphthalene under pressure: density functional calculations. Eur. Phys. J. B 89, 142 (2016). https://doi.org/10.1140/epjb/e2016-60886-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60886-y

Keywords

Navigation