Skip to main content

Advertisement

Log in

Extended Hubbard model with renormalized Wannier wave functions in the correlated state III

Statistically consistent Gutzwiller approximation and the metallization of atomic solid hydrogen

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We extend our previous approach [J. Kurzyk, W. Wójcik, J. Spalek, Eur. Phys. J. B 66, 385 (2008); J. Spałek, J. Kurzyk, R. Podsiadły, W. Wójcik, Eur. Phys. J. B 74, 63 (2010)] to modeling correlated electronic states and the metal-insulator transition by applying the so-called statistically consistent Gutzwiller approximation (SGA) to carry out self-consistent calculations of the renormalized single-particle Wannier functions in the correlated state. The transition to the Mott-Hubbard insulating state at temperature T = 0 is of weak first order even if antiferromagnetism is disregarded. The magnitude of the introduced self-consistent magnetic correlation field is calculated and shown to lead to a small magnetic moment in the magnetically uniform state. Realistic value of the applied magnetic field has a minor influence on the metallic-state characteristics near the Mott-Hubbard localization threshold. The whole analysis has been carried out for an extended Hubbard model on a simple cubic (SC) lattice and the evolution of physical properties is analyzed as a function of the lattice parameter for the renormalized 1s-type Wannier functions. Quantum critical scaling of the selected physical properties is analyzed as a function of the lattice constant R → R c  = 4.1a 0, where R c is the critical value for metal-insulator transition and a 0 = 0.53 Å is the Bohr radius. A critical pressure for metallization of solid atomic hydrogen is estimated and is ~102 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.F. Mott, Proc. Phys. Soc. Sect. A 62, 416 (1949)

    Article  ADS  Google Scholar 

  2. N.F. Mott, Metal-Insulator Transitions, 2nd edn. (Taylor and Francis, London, 1990)

  3. F. Gebhard, The Mott Metal-Insulator Transition (Springer, Berlin, 1997)

  4. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  5. I. Bloch, in Understanding Quantum Phase Transitions, edited by L.D. Carr (CRC Press, Boca Raton, 2011), Chap. 19

  6. E. Wigner, Trans. Faraday Soc. 34, 29 (1938)

    Article  Google Scholar 

  7. E. Wigner, Phys. Rev. 46, 1002 (1934)

    Article  ADS  Google Scholar 

  8. P.W. Anderson, Phys. Rev. 115, 2 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. P.W. Anderson, in Solid State Physics, edited by F. Seitz, D. Turnbull (Academic Press, New York, 1963), Vol. 14, pp. 99 − 213

  10. J. Hubbard, Proc. Roy. Soc. 276, 238 (1963)

    Article  ADS  Google Scholar 

  11. J. Hubbard, Proc. Roy. Soc. 281, 401 (1964)

    Article  ADS  Google Scholar 

  12. J. Kurzyk, W. Wójcik, J. Spałek, Eur. Phys. J. B 66, 385 (2008), Part I

    Article  ADS  Google Scholar 

  13. J. Spałek, J. Kurzyk, R. Podsiadły, W. Wójcik, Eur. Phys. J. B 74, 63 (2010), Part II

    Article  ADS  Google Scholar 

  14. V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  15. V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997)

    Article  ADS  Google Scholar 

  16. G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

    Article  ADS  Google Scholar 

  17. D. Vollhardt, Ann. Phys. 524, 1 (2012)

    Article  MATH  Google Scholar 

  18. A. Rycerz, Ph.D. thesis, Marian Smoluchowki Institute of Physics, Jagiellonian University, 2003

  19. J. Jędrak, J. Kaczmarczyk, J. Spałek, arXiv:1008. 0021 [cond-mat.str-el] (2010)

  20. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, New York, 2007)

  21. P. Korbel, W. Wójcik, A. Klejnberg, J. Spałek, M. Acquarone, M. Lavagna, Eur. Phys. J. B 32, 315 (2003)

    Article  ADS  Google Scholar 

  22. W.F. Brinkman, T.M. Rice, Phys. Rev. B 2, 4302 (1970)

    Article  ADS  Google Scholar 

  23. J. Spałek, Physica B 378-380, 654 (2006)

    Article  ADS  Google Scholar 

  24. J. Spałek, Phys. Stat. Sol. B 243, 78 (2006)

    Article  ADS  Google Scholar 

  25. J. Spałek, J. Sol. Stat. Chem. 88, 70 (1990)

    Article  ADS  Google Scholar 

  26. K. Shibata, T. Ohashi, T. Ogawa, R. Kodama, Phys. Rev. B 82, 195123 (2010)

    Article  ADS  Google Scholar 

  27. S.T. Weir, A.C. Mitchell, W.J. Nellis, Phys. Rev. Lett. 76, 1860 (1996)

    Article  ADS  Google Scholar 

  28. I. Silvera, Proc. Natl. Acad. Sci. USA 107, 12743 (2010)

    Article  ADS  Google Scholar 

  29. M.A. Morales, C. Pierleoni, E. Schwegler, D.M. Ceperley, Proc. Natl. Acad. Sci. USA 107, 12799 (2010)

    Article  ADS  Google Scholar 

  30. I. Tamblyn, S.A. Bonev, Phys. Rev. Lett. 104, 065702 (2010)

    Article  ADS  Google Scholar 

  31. J. Spalek, A. Datta, J.M. Honig, Phys. Rev. Lett. 59, 728 (1987)

    Article  ADS  Google Scholar 

  32. J. Spałek, in Encyclopedia of Condensed Matter Physics, edited by F. Bassani et al. (Elsevier, Amsterdam, 2005), Vol. 3, pp. 126−36

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Spałek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kądzielawa, A., Spałek, J., Kurzyk, J. et al. Extended Hubbard model with renormalized Wannier wave functions in the correlated state III. Eur. Phys. J. B 86, 252 (2013). https://doi.org/10.1140/epjb/e2013-40127-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40127-y

Keywords

Navigation