Skip to main content
Log in

Optical and photocatalytic properties of two-dimensional MoS2

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The electronic structure and optical spectrum of monolayer MoS2 are calculated using both the modified Becke-Johnson (mBJ) approximation and Bethe-Salpeter equation. Bulk MoS2 is an indirect band gap semiconductor, but thinned to a monolayer it converts to a direct band gap semiconductor with increased gap. The calculated mBJ band gaps of MoS2 amount to 1.15 eV for the bulk and 1.90 eV for the monolayer, in excellent agreement with experiment. The experimental excitonic peaks of monolayer MoS2 at 1.88 eV and 2.06 eV are reproduced by the calculations. The high photoluminescence yield can be attributed to a high binding energy of the excitons and is not due to a splitting of the valence bands, as is commonly assumed. We also show that monolayer MoS2 has the ability to oxidize H2O and produce O2 as well as to reduce H+ to H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Coehoorn, C. Haas, J. Dijkstra, C.J.F. Flipse, R.A. de Groot, Phys. Rev. B 35, 6203 (1987)

    Article  ADS  Google Scholar 

  2. W. Schockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)

    Article  ADS  Google Scholar 

  3. G.S. Calabrese, M.S. Wrighton, J. Am. Chem. Soc. 103, 6273 (1981)

    Article  Google Scholar 

  4. K.K. Kam, B.A. Parkinson, J. Phys. Chem. 86, 463 (1982)

    Article  Google Scholar 

  5. R.A. Simon, A.J. Ricco, D.J. Harrison, M.S. Wrighton, J. Phys. Chem. 87, 4446 (1983)

    Article  Google Scholar 

  6. C.R. Cabrera, H.D. Abruna, J. Electrochem. Soc. 135, 1436 (1988)

    Article  Google Scholar 

  7. Y. Kim, J.L. Huang, C.M. Lieber, Appl. Phys. Lett. 59, 3404 (1991)

    Article  ADS  Google Scholar 

  8. J.P. Wilcoxon, P.P. Newcomer, G.A. Samara, J. Appl. Phys. 81, 7934 (1997)

    Article  ADS  Google Scholar 

  9. E. Fortin, W. Sears, J. Phys. Chem. Solids 43, 881 (1982)

    Article  ADS  Google Scholar 

  10. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  ADS  Google Scholar 

  11. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Science 331, 568 (2011)

    Article  ADS  Google Scholar 

  12. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 11, 5111 (2011)

    Article  ADS  Google Scholar 

  13. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011)

    Article  ADS  Google Scholar 

  14. H.S.S.R. Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C.N.R. Rao, Angew. Chem. Int. Ed. 49, 4059 (2010)

    Article  Google Scholar 

  15. R.F. Frindt, A.D. Yoffe, Proc. R. Soc. Lond. A 273, 69 (1963)

    Article  ADS  Google Scholar 

  16. B.L. Evans, P.A. Young, Proc. R. Soc. Lond. A 284, 402 (1965)

    Article  ADS  Google Scholar 

  17. J.A. Wilson, A.D. Yoffe, Adv. Phys. 18, 193 (1969)

    Article  ADS  Google Scholar 

  18. R.A. Neville, B.L. Evans, Phys. Stat. Sol. B 73, 597 (1976)

    Article  ADS  Google Scholar 

  19. G.L. Frey, S. Elani, M. Homyonfer, Y. Feldman, R. Tenne, Phys. Rev. B 57, 6666 (1998)

    Article  ADS  Google Scholar 

  20. J.P.W. Newcomer, G.A. Samara, J. Appl. Phys. 81, 7934 (1997)

    Article  ADS  Google Scholar 

  21. W. Hanke, L.J. Sham, Phys. Rev. B 21, 4656 (1980)

    Article  ADS  Google Scholar 

  22. C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, S.G. Louie, Phys. Rev. Lett. 92, 077402 (2004)

    Article  ADS  Google Scholar 

  23. F. Wang, G. Dukovic, L.E. Brus, T.F. Heinz, Science 308, 838 (2005)

    Article  ADS  Google Scholar 

  24. B. Arnaud, S. Lebégue, P. Rabiller, M. Alouani, Phys. Rev. Lett. 96, 026402 (2006)

    Article  ADS  Google Scholar 

  25. L. Wirtz, A. Marini, M. Gruning, G. Kresse, A. Rubio, Phys. Rev. Lett. 100, 189701 (2008)

    Article  ADS  Google Scholar 

  26. H.C. Hsueh, G.Y. Guo, S.G. Louie, Phys. Rev. B 84, 85404 (2011)

    Article  ADS  Google Scholar 

  27. L. Yang, C.H. Park, J. Deslippe, S.G. Louie, Phys. Rev. Lett. 103, 186802 (2009)

    Article  ADS  Google Scholar 

  28. V.G. Kravets, A.N. Grigorenko, R.R. Nair, P. Blake, S. Anissimova, K.S. Novoselov, A.K. Geim, Phys. Rev. B 81, 155413 (2010)

    Article  ADS  Google Scholar 

  29. K.F. Mak, J. Shan, T.F. Heinz, Phys. Rev. Lett. 106, 046401 (2011)

    Article  ADS  Google Scholar 

  30. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  31. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010)

    Article  ADS  Google Scholar 

  32. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, ACS Nano 4, 2695 (2010)

    Article  Google Scholar 

  33. S.W. Han, H. Kwon, S.K. Kim, S. Ryu, W.S. Yun, D.H. Kim, J.H. Hwang, J.-S. Kang, J. Baik, H.J. Shin, S.C. Hong, Phys. Rev. B 84, 17 (2011)

    Google Scholar 

  34. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  35. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (TU Vienna, Vienna, 2001)

  36. U. Schwingenschlögl, C. Schuster, Phys. Rev. Lett. 99, 237206 (2007)

    Article  ADS  Google Scholar 

  37. U. Schwingenschlögl, C. Schuster, Europhys. Lett. 79, 27003 (2007)

    Article  ADS  Google Scholar 

  38. U. Schwingenschlögl, C. Schuster, R. Frésard, Europhys. Lett. 81, 27002 (2008)

    Article  ADS  Google Scholar 

  39. U. Schwingenschlögl, C. Schuster, R. Frésard, Europhys. Lett. 88, 67008 (2009)

    Article  ADS  Google Scholar 

  40. N. Singh, U. Schwingenschlögl, Chem. Phys. Lett. 508, 29 (2011)

    Article  ADS  Google Scholar 

  41. N. Singh, S.M. Saini, T. Nautiyal, S. Auluck, J. Appl. Phys. 100, 083525 (2006)

    Article  ADS  Google Scholar 

  42. S. Sharma, J.K. Dewhurst, A. Sanna, E.K.U. Gross, Phys. Rev. Lett. 107, 186401 (2011)

    Article  ADS  Google Scholar 

  43. R. Coehoorn, C. Haas, J. Dijkstra, C.J.F. Flipse, R.A. de Groot, A. Wold, Phys. Rev. B 35, 6195 (1987)

    Article  ADS  Google Scholar 

  44. Z.Y. Zhu, Y.C. Cheng, U. Schwingenschlögl, Phys. Rev. B 84, 153402 (2011)

    Article  ADS  Google Scholar 

  45. A.H. Nethercot, Phys. Rev. Lett. 33, 1088 (1974)

    Article  ADS  Google Scholar 

  46. J.J. Liu, X.L. Fu, S.F. Chen, Y.F. Zhu, Appl. Phys. Lett. 99, 191903 (2011)

    Article  ADS  Google Scholar 

  47. D.J. Wanga, Z.H. Li, Y.L. Ana, Y.J. Huang, L.Z. Wuc, J. Shen, Int. J. Hydrogen Energy 37, 8240 (2012)

    Article  Google Scholar 

  48. J. Cao, B. Xu, H. Lin, B. Luo, S. Chen, Dalton Trans. 41, 11482 (2012)

    Article  Google Scholar 

  49. B.L. Abrams, J.P. Wilcoxon, Crit. Rev. Solid State Mater. Sci. 30, 153 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Schwingenschlögl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, N., Jabbour, G. & Schwingenschlögl, U. Optical and photocatalytic properties of two-dimensional MoS2 . Eur. Phys. J. B 85, 392 (2012). https://doi.org/10.1140/epjb/e2012-30449-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30449-7

Keywords

Navigation