Skip to main content
Log in

Electronic transport properties of junctions between carbon nanotubes and graphene nanoribbons

  • Regular Article
  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using the tight-binding model and Green’s function method, we studied the electronic transport of four kinds of nanotube-graphene junctions. The results show the transport properties depend on both types of the carbon nanotube and graphene nanoribbon, metal or semiconducting. Moreover, the defect at the nanotube-graphene interface did not affect the conductance of the whole system at the Fermi level. In the double junction of nanotube/nanoribbon/nanotube, quasibound states are found, which cause antiresonance and result in conductance dips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  3. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 294, 1317 (2001)

    Article  ADS  Google Scholar 

  4. S. Tans, A. Verschueren, C. Dekker, Nature 393, 49 (1998)

    Article  ADS  Google Scholar 

  5. B. Trauzettel, D. Bulaev, D. Loss, G. Burkard, Nature Physics 3, 192 (2007)

    Article  ADS  Google Scholar 

  6. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Phys. Rev. Lett. 100, 206803 (2008)

    Article  ADS  Google Scholar 

  7. M. Ouyang, J. Huang, C. Cheung, C. Lieber, Science 291, 97 (2001)

    Article  ADS  Google Scholar 

  8. M. Menon, A. Andriotis, D. Srivastava, I. Ponomareva, L. Chernozatonskii, Phys. Rev. Lett. 91, 145501 (2003)

    Article  ADS  Google Scholar 

  9. A. Andriotis, M. Menon, D. Srivastava, L. Chernozatonskii, Phys. Rev. B 65, 165416 (2002)

    Article  ADS  Google Scholar 

  10. H. Li, L. Wang, Y. Zheng, J. Appl. Phys. 105, 013703 (2009)

    Article  ADS  Google Scholar 

  11. S. Hong, Y. Yoon, J. Guo, Appl. Phys. Lett. 92, 083107 (2008)

    Article  ADS  Google Scholar 

  12. Z. Xu, Q.S. Zheng, G. Chen, Appl. Phys. Lett. 90, 223115 (2007)

    Article  ADS  Google Scholar 

  13. A.N. Andriotis, E. Richter, M. Menon, Appl. Phys. Lett. 91, 152105 (2007)

    Article  ADS  Google Scholar 

  14. E. Jódar, A. Pérez-Garrido, A. Díaz-Sánchez, Phys. Rev. B 73, 205403 (2006)

    Article  ADS  Google Scholar 

  15. A. Andriotis, M. Menon, D. Srivastava, L. Chernozatonskii, Phys. Rev. Lett. 87, 66802 (2001)

    Article  ADS  Google Scholar 

  16. A.G. Cano-Marquez, F.J. Rodríguez-Macias, J. Campos-Delgado, C.G. Espinosa-Gonzalez, F. Tristan-Lopez, D. Ramírez-Gonzalez, D.A. Cullen, D.J. Smith, M. Terrones, Y.I. Vega-Cantu, Nano, Lett. 9, 1527 (2009)

    Article  ADS  Google Scholar 

  17. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Nature 458, 872 (2009)

    Article  ADS  Google Scholar 

  18. L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 458, 877 (2009)

    Article  ADS  Google Scholar 

  19. H. Santos, L. Chico, L. Brey, Phys. Rev. Lett. 103, 86801 (2009)

    Article  ADS  Google Scholar 

  20. T. Li, S. Chang, M. Lin, Eur. Phys. J. B 70, 497 (2009)

    Article  ADS  Google Scholar 

  21. Y.O. Klymenko, Eur. Phys. J. B 77, 443 (2010)

    Article  ADS  Google Scholar 

  22. R. Saito, M. Fujita, G. Dresselhaus, M. Dresselhaus, Phys. Rev. B 46, 1804 (1992)

    Article  ADS  Google Scholar 

  23. L. Chico, L.X. Benedict, S.G. Louie, M.L. Cohen, Phys. Rev. B 54, 2600 (1996)

    Article  ADS  Google Scholar 

  24. K.L. Ma, X.H Yan, Y. Xiao, Y.P. Chen, Solid State Commun. 150, 1308 (2010)

    Article  ADS  Google Scholar 

  25. D. Orlikowski, H. Mehrez, J. Taylor, H. Guo, J. Wang, C. Roland, Phys. Rev. B 63, 155412 (2001)

    Article  ADS  Google Scholar 

  26. S. Datta, Electronic Transport in Mesoscopic Systems(Cambridge University Press, 1997)

  27. F. Sols, M. Macucci, U. Ravaioli, K. Hess, J. Appl. Phys. 66, 3892 (1989)

    Article  ADS  Google Scholar 

  28. K. Nakada, M. Fujita, G. Dresselhaus, M. Dresselhaus, Phys. Rev. B 54, 17954 (1996)

    Article  ADS  Google Scholar 

  29. X. Blase, L.X. Benedict, E.L. Shirley, S.G. Louie, Phys. Rev. Lett. 72, 1878 (1994)

    Article  ADS  Google Scholar 

  30. V. Zólyomi, J. Kürti, Phys. Rev. B 70, 85403 (2004)

    Article  Google Scholar 

  31. I. Deretzis, A. La Magna, Eur. Phys. J. B 81, 15 (2011)

    Article  ADS  Google Scholar 

  32. H. Joon, J. Ihm, S.G. Louie, M.L. Cohen, Phys. Rev. Lett. 84, 2917 (2000)

    Article  ADS  Google Scholar 

  33. I. Deretzis, G. Fiori, G. Iannaccone, A. La Magna, Phys. Rev. B 81, 085427 (2010)

    Article  ADS  Google Scholar 

  34. T. Li, S.P. Lu, Phys. Rev. B 77, 085408 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. H. Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, K.L., Yan, X.H., Guo, Y.D. et al. Electronic transport properties of junctions between carbon nanotubes and graphene nanoribbons. Eur. Phys. J. B 83, 487–492 (2011). https://doi.org/10.1140/epjb/e2011-20313-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20313-9

Keywords

Navigation