Skip to main content
Log in

Probing the molecular orbitals of FePc near the chemical potential using electron energy-loss spectroscopy

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We have studied the electronic structure of iron phthalocyanine (FePc) films at low temperature using electron energy-loss spectroscopy. The electronic excitation spectrum of FePc is rather complex and comprises both π-π* transitions of the phthalocyanine ligand and transitions that involve the Fe 3d orbitals. The C 1s core excitations provide so far unidentified information on the molecular orbitals. They demonstrate that the Fe 3d orbital with eg symmetry is energetically located in between the highest occupied and the lowest unoccupied ligand state and that it is not fully occupied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • H. Wende, M. Bernien, J. Luo, C. Sorg, N. Ponpandian, J. Kurde, J. Miguel, M. Piantek, X. Xu, Ph. Eckhold, W. Kuch, K. Baberschke, P.M. Panchmatia, B. Sanyal, P.M. Oppeneer, O. Eriksson, Nature Materials 6, 516 (2007)

  • P. Gambardella, S. Stepanow, A. Dmitriev, J. Honolka, F.M.F. de Groot, M. Lingenfelder, S.S. Gupta, D.D. Sarma, P. Bencok, S. Stanescu, S. Clair, S. Pons, N. Lin, A.P. Seitsonen, H. Brune, J.V. Barth, K. Kern, Nature Materials 8, 189 (2009)

  • M. Mannini, F. Pineider, Ph. Sainctavit, C. Danieli, E. Otero, C. Sciancalepore, A.M. Talarico, M.-A. Arrio, A. Cornia, D. Gatteschi, R. Sessoli, Nature Materials 8, 194 (2009)

  • D. Gatteschi, A. Cornia, M. Mannini, R. Sessoli, Inorg. Chem. 48, 3408 (2009)

    Google Scholar 

  • G.A. Timco, S. Carretta, F. Troiani, F. Tuna, R.J. Pritchard, C.A. Muryn, E.J.L. McInnes, A. Ghirri, A. Candini, P. Santini, G. Amoretti, M. Affronte, R.E.P. Winpenny, Nature Nanotechnology 4, 173 (2009)

  • O. Kahn, Molecular Magnetism (VCH Publishers, New York, 1993)

  • L. Bogani, W. Wernsdorfer, Nature Materials 7, 179 (2008)

    Google Scholar 

  • Phthalocyanines: Properties and Applications, edited by C.C. Leznoff, A.B.P. Lever (VCH Publishers, Weinheim, 1989)

  • N.B. McKeown, Phthalocyanine Materials (Cambridge University Press, Cambridge, 1998)

  • M. Pope, C.E. Swenberg, Electronic processes in organic crystals and polymers (Oxford University Press, Oxford, 1999), and references therein

  • D. Dini, M. Hanack, J. Porphyrins Phthalocyan. 8, 915 (2004), and references therein

  • C.W. Miller, A. Sharoni, G. Liu, C.N. Colesniuc, B. Fruhberger, I.K. Schuller, Phys. Rev. B 72, 104113 (2005)

    Google Scholar 

  • M. Evangelisti, J. Bartolome, L.J. de Jongh, G. Filoti, Phys. Rev. B 66, 144410 (2002)

    Google Scholar 

  • M.-S Liao, J.D. Watts, M.-J. Huang, J. Computational Chem. 27, 1577 (2006)

    Google Scholar 

  • A.M. Schaffer, M. Goutermann, E.R. Davidson, Theoret. Chim. Acta 30, 9 (1973)

    Google Scholar 

  • A. Henriksson-Enflo, Int. J. Quantum Chemistry 37, 547 (1990)

    Google Scholar 

  • B. Bialek, I.G. Kim, J.I. Lee, Surf. Sci. 526, 367 (2003)

    Google Scholar 

  • M. Sumimoto, Y. Kawashima, K. Hori, H. Fujimoto, Spectrochimica Acta Part A 71, 286 (2008)

    Google Scholar 

  • M.D. Kuzmin, R. Hayn, V. Oison, Phys. Rev. B 79, 024413 (2009)

    Google Scholar 

  • M. Sumimoto, Y. Kawashima, K. Hori, H. Fujimoto, Dalton Transactions, 5737 (2009)

  • N. Marom, L. Kronik, Appl. Phys. A 95, 165 (2009)

    Google Scholar 

  • N. Marom, O. Hod, G.E. Scuseria, L. Kronik, J. Chem. Phys. 128, 164107 (2008)

    Google Scholar 

  • N. Marom, L. Kronik, Appl. Phys. A 95, 159 (2009)

    Google Scholar 

  • B.W. Dale, R.J.P. Williams, C.E. Johnson, T.L. Thorp, J. Chem. Phys. 49, 3441 (1968)

    Google Scholar 

  • C.G. Barraclough, R.L. Martin, S. Mitra, R.C. Sherwood, J. Chem. Phys. 53, 1643 (1970)

    Google Scholar 

  • M. Stillman, A.J. Thompson, J. Chem. Soc. Farady Transact. II 70, 790 (1974)

  • A. Labarta, E. Molins, X. Vinas, J. Tejada, A. Caubet, S. Alvarez, J. Chem. Phys. 80, 444 (1984)

    Google Scholar 

  • Ph. Coppens, L. Li, J. Chem. Phys. 81, 1983 (1984)

  • M. Koshino, H. Kurata, S. Isoda, T. Kobayashi, Micron 31, 373 (2000)

    Google Scholar 

  • G. Filoti, M.D. Kuzmin, J. Bartolome, Phys. Rev. B 74, 134420 (2006)

    Google Scholar 

  • M. Knupfer, T. Pichler, M.S. Golden, J. Fink, M. Murgia, R.H. Michel, R. Zamboni, C. Taliani, Phys. Rev. Lett. 83, 1443 (1999)

    Google Scholar 

  • M. Knupfer, J. Fink, E. Zojer, G. Leising, D. Fichou, Chem. Phys. Lett. 318, 585 (2000)

    Google Scholar 

  • M. Knupfer, Surf. Sci. Rep. 42, 1 (2001), and references therein

  • R. Schuster, M. Knupfer, H. Berger, Phys. Rev. Lett. 98, 037402 (2007)

    Google Scholar 

  • C. Kramberger, R. Hambach, C. Giorgetti, M.H. Rümmeli, M. Knupfer, J. Fink, B. Büchner, L. Reining, E. Einersson, S. Maruyama, F. Sottile, K. Hannewald, V. Olevano, A.G. Marinopoulos, T. Pichler, Phys. Rev. Lett. 100, 196803 (2008)

    Google Scholar 

  • Throughout this contribution we denote the molecular orbitals of FePc according to the irreproducible representations of the symmetry group D4h

  • J. Fink, Adv. Electron. Electron Phys. 75, 121 (1989)

  • J. Fink, N. Nücker, E. Pellegrin, H. Romberg, M. Alexander, M. Knupfer, J. Electron. Spectrosc. Relat. Phenom. 66, 395 (1994)

    Google Scholar 

  • F. Roth, A. König, R. Kraus, M. Knupfer, J. Chem. Phys. 128, 194711 (2008)

    Google Scholar 

  • A. König, F. Roth, R. Kraus, M. Knupfer, J. Chem. Phys. 130, 214503 (2009)

    Google Scholar 

  • P.E. Fielding, A.G. MacKay, Aust. J. Chem. 28, 1445 (1975)

    Google Scholar 

  • Z.T. Liu, H.S. Kwok, A.B. Djurisic, J. Phys. D: Appl. Phys. 37, 678 (2004)

    Google Scholar 

  • T. Kroll, V.Yu. Aristov, O.V. Molodtsova, Yu.A. Ossipyan, D.V. Vyalikh, B. Büchner, M. Knupfer, J. Phys. Chem. A 113, 8917 (2009)

    Google Scholar 

  • K. Flatz, M. Grobosch, M. Knupfer, J. Chem. Phys. 126, 214702 (2007)

    Google Scholar 

  • K. Flatz, M. Grobosch, M. Knupfer, Appl. Phys. A 90, 243 (2008)

    Google Scholar 

  • H. Peisert, M. Knupfer, J. Fink, Surf. Sci. 515, 491 (2002)

    Google Scholar 

  • O.V. Molodtsova, M. Knupfer, V.V. Maslyuk, D.V. Vyalikh, V.M. Zhilin, Y.A. Ossipyan, T. Bredow, I. Mertig, V.Y. Aristov, J. Chem. Phys. 129, 154705 (2008)

    Google Scholar 

  • Note, that this type of background only serves as a phenomenological model since an exact treatment of the respective background taking into account step-like approaches as in X-ray absorption spectroscopy as well as multiple scattering effects as present in EELS is unknown. We emphasize that our results and conclusions do not depend on the exact form of the background procedure

  • J. Ahlund, K. Nilson, J. Schiessling, L. Kjelgaard, S. Berner, N. Martensson, C. Puglia, B. Brena, M. Nyberg, Y. Luo, J. Chem. Phys. 125, 034709 (2006)

    Google Scholar 

  • X. Liu, T. Pichler, M. Knupfer, J. Fink, H. Kataura, Phys. Rev. B 70, 205405 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Knupfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, F., König, A., Kraus, R. et al. Probing the molecular orbitals of FePc near the chemical potential using electron energy-loss spectroscopy. Eur. Phys. J. B 74, 339–344 (2010). https://doi.org/10.1140/epjb/e2010-00104-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00104-8

Keywords

Navigation