Skip to main content
Log in

Population dynamics on random networks: simulations and analytical models

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the phase diagram of the standard pair approximation equations for two different models in population dynamics, the susceptible-infective-recovered-susceptible model of infection spread and a predator-prey interaction model, on a network of homogeneous degree k. These models have similar phase diagrams and represent two classes of systems for which noisy oscillations, still largely unexplained, are observed in nature. We show that for a certain range of the parameter k both models exhibit an oscillatory phase in a region of parameter space that corresponds to weak driving. This oscillatory phase, however, disappears when k is large. For k = 3, 4, we compare the phase diagram of the standard pair approximation equations of both models with the results of simulations on regular random graphs of the same degree. We show that for parameter values in the oscillatory phase, and even for large system sizes, the simulations either die out or exhibit damped oscillations, depending on the initial conditions. We discuss this failure of the standard pair approximation model to capture even the qualitative behavior of the simulations on large regular random graphs and the relevance of the oscillatory phase in the pair approximation diagrams to explain the cycling behavior found in real populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.D. Murray, Mathematical Biology I: An Introduction (Springer-Verlag, New York, 2002)

  • R.M. Anderson, R.M. May, Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, Oxford, 1991)

  • The Geometry of Ecological Interactions: Simplifying Spatial Complexity, edited by U. Dieckmann, R. Law, J.A.J. Metz (Cambridge University Press, Cambridge, 2000)

  • M.J. Keeling, K.T.D. Eames, J. R. Soc. Interface 2, 295 (2005)

    Google Scholar 

  • H. Matsuda, N. Ogita, A. Sasaki, K. Sato, Prog. Theor. Phys. 88, 1035 (1992)

    Google Scholar 

  • S. Levin, R. Durrett, Phil. Trans. R. Soc. Lond. B 351, 1615 (1996)

    Google Scholar 

  • M.J. Keeling, D.A. Rand, A.J. Morris, Proc. R. Soc. Lond. B 264, 1149 (1997)

    Google Scholar 

  • M. van Baalen, in The Geometry of Ecological Interactions: Simplifying Spatial Complexity, edited by U. Dieckmann, R. Law, J.A.J. Metz (Cambridge University Press, Cambridge, 2000), p. 359

  • G. Rozhnova, A. Nunes, Phys. Rev. E 79, 041922 (2009)

    Google Scholar 

  • D. A. Rand, in Advanced Ecological Theory: Principles and Applications, edited by J. McGlade (Blackwell Science, Oxford, 1999), p. 100

  • A.J. Morris, Ph.D. dissertation, University of Warwick, Coventry, UK (1997)

  • J. Benoit, A. Nunes, M.M. Telo da Gama, Eur. Phys. J. B 50, 177 (2006)

  • G. Rozhnova, A. Nunes, in Complex Sciences: Complex 2009, Part I, LNICST 4, edited by J. Zhou (Springer Berlin Heidelberg, 2009), p. 792

  • J. Joo, J.L. Lebowitz, Phys. Rev. E 70, 036114 (2004)

    Google Scholar 

  • J.E. Satulovsky, T. Tomé, Phys. Rev. E 49, 5073 (1994)

    Google Scholar 

  • T. Tomé, K.C. de Carvalho, J. Phys. A: Math. Theor. 40, 12901 (2007)

    Google Scholar 

  • Z. Nikoloski, N. Deo, L. Kucera, Complexus 3, 169 (2006)

    Google Scholar 

  • E. Volz, L.A. Meyers, Proc. R. Soc. B 274, 2925 (2007)

    Google Scholar 

  • G. Rozhnova, A. Nunes, Phys. Rev. E 80, 051915 (2009)

    Google Scholar 

  • C.T. Bauch, D.J.D. Earn, Proc. R. Soc. London, Ser. B 270, 1573 (2003)

    Google Scholar 

  • C.S. Elton, Voles, Mice and Lemmings: Problems in Population Dynamics (Clarendon Press, Oxford, 1942)

  • C.B. Huffaker, Hilgardia 27, 343 (1958)

  • J.O. Wolff, Ecological Monographs 50, 111 (1980)

    Google Scholar 

  • A. Lotka, J. Am. Chem. Soc. 42, 1595 (1920)

    Google Scholar 

  • V. Volterra, Leçons sur la Théorie Mathématique de la Lutte pour la Vie (Gauthier-Villars, Paris, 1931)

  • A. Lipowski, Phys. Rev. E 60, 5179 (1999)

    Google Scholar 

  • T. Antal, M. Droz, Phys. Rev. E 63, 056119 (2001)

    Google Scholar 

  • M. Mobilia, I.T. Georgiev, U.C. Täuber, J. Stat. Phys. 128, 447 (2007)

    Google Scholar 

  • M. Peltomäki, M. Rost, M. Alava, Phys. Rev. E 78, 050903(R) (2008)

  • S. Boutin, Wildl. Res. 22, 89 (1995)

    Google Scholar 

  • A.B. Bortz, M.H. Kalos, J.L. Lebowitz, J. Comput. Phys. 17, 10 (1975)

    Google Scholar 

  • D.T. Gillespie, J. Comput. Phys. 22, 403 (1976)

    Google Scholar 

  • G. Szabó, A. Szolnoki, R. Izsák, J. Phys. A 37, 2599 (2004)

    Google Scholar 

  • A. Szolnoki, G. Szabó, Phys. Rev. E 70, 037102 (2004)

    Google Scholar 

  • E. Pugliese, C. Castellano, e-print [arXiv:0903.5489]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rozhnova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozhnova, G., Nunes, A. Population dynamics on random networks: simulations and analytical models. Eur. Phys. J. B 74, 235–242 (2010). https://doi.org/10.1140/epjb/e2010-00068-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00068-7

Keywords

Navigation