Skip to main content
Log in

Numerical study of the temperature and porosity effects on the fracture propagation in a 2D network of elastic bonds

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

This article reports results concerning the fracture of a 2d triangular lattice of atoms linked by springs. The lattice is submitted to controlled strain tests and the influence of both porosity and temperature on failure is investigated. The porosity is found on one hand to decrease the stiffness of the specimen but on the other hand it increases the deformation sustained prior to failure. Temperature is shown to control the ductility due to the presence of cavities that grow and merge. The rough surfaces resulting from the propagation of the crack exhibit self-affine properties with a roughness exponent ζ= 0.59 ± 0.07 over a range of length scales which increases with temperature. Large cavities also have rough walls which are found to be fractal with a dimension, D, which evolves with the distance from the crack tip. For large distances, D is found to be close to 1.5, and close to 1.0 for cavities just before their coalescence with the main crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Physical Aspects of Fracture, Proceedings of the NATO Advanced Study Institute on Physical Aspects of Fracture, 5–17 June 2000, Cargese, France, edited by E. Bouchaud, D. Jeulin, C. Prioul, S. Roux (Kluwer, Dordrech, 2000)

  • J.C. Charmet, S. Roux, E. Guyon, Disorder and Fracture, Proceedings of the NATO Advanced Study Institute on Disorder and Fracture, 29 May–9 June 1989, Cargese, France, edited by J.C. Charmet, S. Roux, E. Guyon (Plenum, New York, 1990)

  • P.M. Duxbury, P.B. Beale, P.L. Leath, Phys. Rev. Lett. 57, 1052 (1986)

    Article  CAS  PubMed  Google Scholar 

  • A. Hansen, J. Schmittbuhl, Phys. Rev. Lett. 90, 0 45504 (2003)

    Google Scholar 

  • A. Politi, M. Zei, Phys. Rev. E 63, 056107 (2001)

    Article  CAS  Google Scholar 

  • H. Herrmann, A. Hansen, S. Roux, Phys. Rev. B 39, 637 (1989)

    Article  Google Scholar 

  • L. de Arcangelis, A. Hansen, H. Herrmann, S. Roux, Phys. Rev. B 40, 877 (1989)

    Article  Google Scholar 

  • E. Bouchaud, J. Phys.: Condens. Matter 9, 4319 (1997)

    Article  CAS  Google Scholar 

  • E. Bouchaud, Surf. Rev. Lett. 10, 73 (2003)

    Article  Google Scholar 

  • C. Poon, R. Sayles, T. Jones, J. Phys. D: Appl. Phys. 25, 1269 (1992)

    Article  Google Scholar 

  • S. Morel, J. Schmittbulh, J. López, G. Valentin, Phys. Rev. E 58, 6999 (1998)

    Article  CAS  Google Scholar 

  • E. Bouchaud, G. Lapasset, J. Planès, Europhys. Lett. 13, 73 (1990)

    CAS  Google Scholar 

  • P. Daguier, B. Nghiem, E. Bouchaud, F. Creuzet, Phys. Rev. Lett. 78, 1062 (1997)

    Article  CAS  Google Scholar 

  • F. Célarié, S. Prades, D. Bonamy et al., Phys. Rev. Lett. 90, 075504 (2003)

    Article  PubMed  Google Scholar 

  • J. Feder, Fractals (Plenum, New York, 1988)

  • J.M. Boffa, C. Allain, J.P. Hulin, Eur. Phys. J. - AP 2, 2 (1998)

    Google Scholar 

  • E. Bouchaud, S. Navéos, J. Phys. France 15, 547 (1995)

    Article  Google Scholar 

  • P. Daguier, S. Hénaux, E. Bouchaud, F. Creuzet, Phys. Rev. E 53, 5637 (1996)

    Article  CAS  Google Scholar 

  • L. Salminen, M. Alava, K. Niskanen, Eur. Phys. J. B 32, 369 (2003)

    CAS  Google Scholar 

  • T. Engøy, K.J. Måløy, A. Hansen, S. Roux, Phys. Rev. Lett. 73, 834 (1994)

    Article  PubMed  Google Scholar 

  • E. Bouchbinder, J. Mathiesen, I. Procaccia, Phys. Rev. Lett. 92, 245505 (2004)

    Article  PubMed  Google Scholar 

  • D. Stauffer, A. Aharony, Introduction to Percolation Theory, 2nd edn. (Taylor and Francis, London, 1992)

  • S. Feng, P.N. Sen, Phys. Rev. Lett. 52, 216 (1984)

    Article  Google Scholar 

  • D.J. Jacobs, M.F. Thorpe, Phys. Rev. E 53, 3682 (1996)

    Article  CAS  Google Scholar 

  • R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, Vol. 1 (Addison-Wesley, 1963), Chap. 9 (“Newton’s Laws of Dynamics”)

  • M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Oxford, 1987)

  • I. Simonsen, A. Hansen, O.M. Nes, Phys. Rev. E. 58, 2779 (1998)

    Article  CAS  Google Scholar 

  • I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, 1992)

  • G. Drazer, H. Auradou, J. Koplik, J.P. Hulin, Phys. Rev. Lett. 92, 014501 (2004)

    Article  CAS  PubMed  Google Scholar 

  • F. Paun, E. Bouchaud, Int. J. Fract. 121, 43 (2003)

    Article  CAS  Google Scholar 

  • E. Ducourthial, E. Bouchaud, J.-L. Chaboche, Comp. Mater. Sci. 19, 229 (2000)

    Article  CAS  Google Scholar 

  • S. Prades, D. Bonamy, C. Guillot, E. Bouchaud (in preparation)

  • H. Auradou, J.P. Hulin, S. Roux Phys. Rev. E 63, 066306 (2001)

    Article  CAS  Google Scholar 

  • S. Morel, E. Bouchaud, J. Schmittbuhl, G. Valentin, Int. J. Fracture 114, 307 (2002)

    Google Scholar 

  • E. Bouchaud, J.-P. Bouchaud, Phys. Rev. B 50, 17752 (1994)

    Article  CAS  Google Scholar 

  • E. Bouchaud, F. Paun, Comp. Sci. Eng. 1, 32 (Sept.-Oct. 1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Auradou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auradou, H., Zei, M. & Bouchaud, E. Numerical study of the temperature and porosity effects on the fracture propagation in a 2D network of elastic bonds. Eur. Phys. J. B 44, 365–372 (2005). https://doi.org/10.1140/epjb/e2005-00135-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00135-2

Keywords

Navigation