Skip to main content
Log in

Abstract.

It was shown recently [1] that the structural \(\alpha \)-relaxation time \(\tau \) of supercooled o-terphenyl depends on a single control parameter \(\Gamma \), which is the product of a function of density \(E(\rho )\), by the inverse temperature T -1. We extend this finding to other fragile glassforming liquids using light scattering data. Available experimental results do not allow to discriminate between several analytical forms of the function \(E(\rho )\), the scaling arising from the separation of density and temperature in \(\Gamma \). We also propose a simple form for \(\tau (\Gamma )\), which depends only on three material-dependent parameters, reproducing relaxation times over 12 orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Dreyfus, A. Aouadi, J. Gapinski, M. Matos-Lopes, W. Steffen, A. Patkowski, R.M. Pick, Phys. Rev. E 68, 011204 (2003)

    Google Scholar 

  2. C.A. Angell, J. Non-Cryst. Solids 73, 1 (1985)

    Google Scholar 

  3. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)

    Google Scholar 

  4. M.H. Cohen, G.S. Grest, Phys. Rev. B 20, 1077 (1979)

    Google Scholar 

  5. R.L. Cook, H.E. King Jr., C.A. Herbst, D.R. Herschbach, J. Chem. Phys. 100, 5178 (1994)

    Google Scholar 

  6. K.U. Schug, H.E. King Jr., R. Böhmer, J. Chem. Phys. 109, 1472 (1998)

    Google Scholar 

  7. G. Fytas, Th. Dorfmuller, C.H. Wang, J. Phys. Chem. 87, 5041 (1983)

    Google Scholar 

  8. M. Paluch, C.M. Roland, J. Gapinski, A. Patkowski, J. Chem. Phys. 118, 3177 (2003) and references herein

    Google Scholar 

  9. M. Paluch, A. Patkowski, E.W. Fischer, Phys. Rev. Lett. 85, 2140 (2000)

    Google Scholar 

  10. M. Paluch, J. Gapinski, A. Patkowski, E.W. Fischer, J. Chem. Phys. 114, 8048 (2001)

    Google Scholar 

  11. A. Patkowski, M. Matos-Lopes, E.W. Fischer, J. Chem. Phys. 119, 1579 (2003)

    Google Scholar 

  12. A. Patkowski, M. Paluch, H. Kriegs, J. Chem. Phys. 117, 2192 (2002)

    Google Scholar 

  13. M. Paluch, R. Casalini, A. Best, A. Patkowski, J. Chem. Phys. 117, 7624 (2002)

    Google Scholar 

  14. J. Gapinski, M. Paluch, A. Patkowski, Phys. Rev. E 66, 11501 (2002)

    Google Scholar 

  15. G. Li, H.E. King Jr., W.F. Oliver, C.A. Herbst, H.Z. Cummins, Phys. Rev. Lett. 74, 2280 (1995)

    Google Scholar 

  16. M. Naoki, H. Endou, K. Matsumoto, J. Phys. Chem. 91, 4169 (1987)

    Google Scholar 

  17. R. Casalini, M. Paluch, C.M. Roland, Phys. Rev. E 67, 31505 (2003)

    Google Scholar 

  18. M. Paluch, C.M. Roland, R. Casalini, G. Meier, A. Patkowski, J. Chem. Phys. 118, 4578 (2003)

    Google Scholar 

  19. M. Paluch, J. Chem. Phys. 115, 10029 (2001)

    Google Scholar 

  20. A. Tölle, Rep. Prog. Phys. 64, 1473 (2001); A. Tölle, H. Schober, J. Wuttke, O.G. Randl, F. Fujura, Phys. Rev. Lett. 80, 2374 (1998). Note that the scaling of S(q,t) described in both papers was observed over a limited time domain by neutron spin echo, but \(S(q,\omega)\) measured in the equivalent frequency domain by depolarized light scattering did not show the same scaling [11]

    Google Scholar 

  21. C. Alba-Simionesco, A. Cailliaux, A. Alegria, G. Tarjus, cond-mat/0404040, Europhys. Lett. 68, 58 (2004); C.M. Roland, R. Casalini, cond-mat/0404181, J. Chem. Phys. 120, 10640 (2004)

    Google Scholar 

  22. R. Casalini, C.M. Roland, cond-mat/0403622, Phys. Rev. E 69, 062501 (2004)

    Google Scholar 

  23. C. Alba-Simionesco, D. Kivelson, G. Tarjus, J. Chem. Phys. 116, 5033 (2002)

    Google Scholar 

  24. G. Tarjus, D. Kivelson, S. Mossa, C. Alba-Simionesco, cond-mat/0309579, J. Chem. Phys. 120, 6135 (2004)

    Google Scholar 

  25. A. Patkowski, J. Gapinski, G. Meier, Coll. Polym. Sci. 282, 874 (2004)

    Google Scholar 

  26. M. Paluch, C.M. Roland, A. Best, J. Chem. Phys. 117, 1188 (2002); S. Kahle, J. Gapinski, G. Hinze, A. Patkowski, G. Meier, in preparation

    Google Scholar 

  27. M. Naoki, S. Koeda, J. Phys. Chem. 93, 948 (1989)

    Google Scholar 

  28. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 2nd edn. (Academic Press, London, 1990)

  29. a) F.J. Stickel, E.W. Fischer, A. Schonhals, F. Freuer, Phys. Rev. Lett. 73, 2936 (1994); b) F. Stickel, E.W. Fischer, R. Richert, J. Chem. Phys. 102, 6251 (1995); F. Stickel, E.W. Fischer, R. Richert, J. Chem. Phys. 104, 2043 (1996); c) F. Stickel, F.T. Berger, R. Richert, E.W. Fischer, J. Chem. Phys. 107, 1086 (1997)

    Google Scholar 

  30. E. Eckstein, J. Quian, R. Hentschke, T. Thurn-Albrecht, W. Steffen, E.W. Fischer, J. Chem. Phys. 113, 4751 (2000)

    Google Scholar 

  31. C. Hansen, F. Stickel, R. Richert, E.W. Fischer, J. Chem. Phys. 108, 6408 (1998)

    Google Scholar 

  32. F.J. Stickel, Ph.D. Dissertation, Johannes-Gutenberg University, Mainz, Germany (1995)

  33. W. Steffen, A. Patkowski, H. Gläser, G. Meier, E.W. Fischer, Phys. Rev. E 49, 2992 (1994); W. Steffen, B. Zimmer, A. Patkowski, G. Meier, E.W. Fischer, J. Non-Cryst. Solids 172-174, 37 (1994)

    Google Scholar 

  34. S. Sastry, cond-mat/012054, Phys. Chem. Comm. 14, U79 (2000)

  35. R. Boehmer, K.L. Ngai, C.A. Angell, D.J. Plazek, J. Chem. Phys. 99, 4201 (1993)

    Google Scholar 

  36. H. Schlosser, J. Ferrante, J. Phys.: Condens. Matter. 1, 2727 (1989)

    Google Scholar 

  37. M. Paluch, private communication

  38. D. Huang, G.B. McKenna, J. Chem. Phys. 114, 5621 (2001)

    Google Scholar 

  39. M. Paluch, R. Casalini, S. Hensel-Bielowka, C.M. Roland, J. Chem. Phys. 116, 9839 (2002)

    Google Scholar 

  40. T. Atake, C.A. Angell, J. Phys. Chem. 83, 3218 (1979)

    Google Scholar 

  41. S. Hensel-Bielowka, J. Ziolo, M. Paluch, C.M. Roland, J. Chem. Phys. 117, 2317 (2002)

    Google Scholar 

  42. M. Paluch, K. Ngai, S. Hensel-Bielowka, J. Chem. Phys. 114, 10872 (2001)

    Google Scholar 

  43. Based on data from W. Steffen, A. Patkowski, G. Meier, E.W. Fischer, J. Chem. Phys. 96, 4171 (1992)

    Google Scholar 

  44. L. Comez, D. Fioretto, F. Scarponi, G. Monaco, J. Chem. Phys. 119, 6032 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dreyfus.

Additional information

Received: 16 July 2004, Published online: 23 December 2004

PACS:

66.20. + d Viscosity of liquids; diffusive momentum transport - 78.35. + c Brillouin and Rayleigh scattering; other light scattering - 64.70.Pf Glass transitions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreyfus, C., Le Grand, A., Gapinski, J. et al. Scaling the \(\alpha \)-relaxation time of supercooled fragile organic liquids. Eur. Phys. J. B 42, 309–319 (2004). https://doi.org/10.1140/epjb/e2004-00386-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00386-3

Keywords

Navigation