Skip to main content
Log in

Abstract.

A stochastic model is derived to predict the turbulent torque produced by a swirling flow. It is a simple Langevin process, with a colored noise. Using the unified colored noise approximation, we derive analytically the PDF of the fluctuations of injected power in two forcing regimes: constant angular velocity or constant applied torque. In the limit of small velocity fluctuations and vanishing inertia, we predict that the injected power fluctuates twice less in the case of constant torque than in the case of constant angular velocity forcing. The model is further tested against experimental data in a von Karman device filled with water. It is shown to allow for a parameter-free prediction of the PDF of power fluctuations in the case where the forcing is made at constant torque. A physical interpretation of our model is finally given, using a quasi-linear model of turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lesieur, La Turbulence (Presses universitaires de Grenoble, 1994)

  2. E. Hopf, J. Rat. Mech. Anal. 1, 87 (1952)

    MathSciNet  MATH  Google Scholar 

  3. A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics (MIT press, Cambridge, 1977)

  4. R. Friedrich, J. Peinke, Phys. Rev. Lett. 78, 863 (1997)

    Article  Google Scholar 

  5. R. Friedrich, J. Peinke, Physica D 102, 147 (1997)

    Article  MATH  Google Scholar 

  6. A. Naert, B. Castaing, B. Chabaud, B. Hebral, J. Peinke, Physica D 113, 73 (1998)

    Article  MATH  Google Scholar 

  7. P. Marcq, A. Naert, Phys. Fluids 13, 2590 (2001)

    Article  Google Scholar 

  8. A. M. Obukhov, Adv. Geophys. 6, 113 (1959)

    Google Scholar 

  9. B. Castaing, Y. Gagne, E.J. Hopfinger, Physica D 46, 177 (1990)

    Article  MATH  Google Scholar 

  10. J. Delour, J.-F. Muzy, A. Arneodo, Eur. Phys. J. B 23, 243 (2001)

    Article  Google Scholar 

  11. R. Friedrich, Phys. Rev. Lett. 90, 084501 (2003)

    Article  Google Scholar 

  12. C. Beck, Europhys. Lett. 64, 151 (2002)

    Article  Google Scholar 

  13. J.-P. Laval, B. Dubrulle, S. Nazarenko, Phys. Rev. Lett. 83, 4061 (1999)

    Article  Google Scholar 

  14. J. Carlier, J.-P. Laval, J.M. Foucaut, M. Stanislas, C.R. Acad. Sci. Ser. B 329, 1 (2001)

    MATH  Google Scholar 

  15. J.-P. Laval, B. Dubrulle, S. Nazarenko, Phys. Fluids 13, 1995 (2001)

    Article  MATH  Google Scholar 

  16. B. Dubrulle, S. Nazarenko, Physica D 110, 123 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Nazarenko, N.K.-R. Kevlahan, B. Dubrulle, J. Fluid Mech. 390, 325 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. J.-P. Laval, B. Dubrulle, S.V. Nazarenko, Physica D 142, 231 (2000)

    Article  MATH  Google Scholar 

  19. B. Dubrulle, J.-P. Laval, S. Nazarenko, N.K.-R. Kevlahan, Phys. Fluids 13, 2045 (2001)

    Article  MathSciNet  Google Scholar 

  20. A.A. Townsend, The structure of turbulent shear flows (CUP, 1976)

  21. J.F. Keffer, J.G. Kawall, J.C.R. Hunt, M.R. Maxey, J. Fluid Mech. 86, 465 (1978)

    MATH  Google Scholar 

  22. M.R. Maxey, J. Fluid Mech. 124, 261 (1981)

    MATH  Google Scholar 

  23. N.K.-R. Kevlahan, Appl. Sci. Res. 51, 411 (1993)

    MATH  Google Scholar 

  24. N.K.-R. Kevlahan, J.C.R. Hunt, J. Fluid Mech. 337, 333 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. J.-P. Laval, B. Dubrulle, J.C. Mc Williams, Phys. Fluids 15, 1327 (2003)

    Article  MathSciNet  Google Scholar 

  26. R. Labbé, J.-F. Pinton, S. Fauve, J. Phys. II France 6, 1099 (1996)

    Article  Google Scholar 

  27. O. Cadot, Y. Couder, A. Daerr, S. Douady, A. Tsinober, Phys. Rev. E 56, 427 (1997)

    Article  Google Scholar 

  28. S. Aumaitre, S. Fauve, J.-F. Pinton, Eur. Phys. J. B 16, 563 (2000)

    Article  Google Scholar 

  29. J.-H.C. Titon, O. Cadot, Phys. Fluids 15, 625 (2003)

    Article  Google Scholar 

  30. S. Aumaitre, S. Fauve, S. McNamara, P. Poggi, Eur. Phys. J. B 19, 449 (2001)

    Article  Google Scholar 

  31. R.S. Ellis, Entropy, Large deviations and statistical mechanics (Springer Verlag, New York, 1985)

  32. Y. Oono, Progr. Theor. Phys. Suppl. 99, 165 (1989)

    MathSciNet  Google Scholar 

  33. L. Marié, F. Daviaud, Phys. Fluids 16, 457 (2004)

    Article  Google Scholar 

  34. P.E. Kloeden, E. Platen, Numerical solution of stochastic differential equations (Springer-Verlag, 1992)

  35. P. Jung, P. Hänggi, Phys. Rev. A 35, 4464 (1987)

    Article  Google Scholar 

  36. S.Z. Ke, D.J. Wu, L. Cao, Eur. Phys. J. B 12, 119 (1999)

    Article  Google Scholar 

  37. J.-F. Pinton, P.C. Holdsworth, R. Labbé, Phys. Rev. E 60, R2452 (1999)

  38. C.M. Bender, S.A. Orszag, Advanced mathematical methods for scientists and engineers (Mc Graw Hill, 1975)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Leprovost.

Additional information

Received: 29 January 2004, Published online: 18 June 2004

PACS:

47.27.-i Turbulent flows, convection, and heat transfer - 47.27.Eq Turbulence simulation and modeling

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leprovost, N., Marié, L. & Dubrulle, B. A stochastic model of torques in von Karman swirling flow. Eur. Phys. J. B 39, 121–129 (2004). https://doi.org/10.1140/epjb/e2004-00177-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00177-x

Keywords

Navigation