Skip to main content
Log in

Arrays of Ni nanowires in alumina membranes: magnetic properties and spatial ordering

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

Magnetic characteristics of arrays of Ni nanowires embedded in porous alumina are reviewed as a function of their spatial ordering. The different steps for the controlled production of highly-ordered nanowires is firstly described. Nanopores are formed into an hexagonal symmetry arrangement by self-organized process during anodization of pure Al. Parameters of the anodization allow us to control their diameter, hexagonal lattice parameter and size of crystalline domains. Subsequently, Ni nanowires are grown inside the pores by electrodeposition. Control of the pores filling and of geometrical ordering characteristics has been performed by SEM, HRSEM, RBS and AFM techniques. The magnetic characterisation of the arrays has been achieved by SQUID and VSM magnetometers, while information on the magnetic state of individual nanowires is obtained by MFM. Experimental studies are presented, particularly coercivity and remanence, for arrays with different degree of ordering (crystalline domains up to around 1 μm), and for ratio diameter to lattice parameter (diameter ranging between 20 and 180 nm, and distance between 35 and 500 nm). FMR studies have allows us to obtain complementary information of the anisotropy and magnetic characteristics. A modelling of multipolar interacting nanowires is introduced to account for the influence of short and long range ordering degree of the arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Appell, Nature 419, 553 (2002)

    Article  Google Scholar 

  2. J.I. Martín, J. Nogués, K. Liu, J.L. Vicent, I.K. Schuller, J. Magn. Magn. Mater. 256, 449 (2003)

    Article  Google Scholar 

  3. C. Ross, Ann. Rev. Mater. Res. 31, 203 (2001)

    Article  Google Scholar 

  4. See J. Magn. Magn. Mater. 249 (2002) Vols. 1-2 devoted to the Proceedings of the Int. Workshop on Magnetic Wires, San Sebastián, Spain

  5. R. O’Barr, S.Y. Yamamoto, S. Schultz, W. Xu, A. Scherer, J. Appl. Phys. 81, 4730 (1997)

    Article  Google Scholar 

  6. R. Skomski, H. Zeng, M. Zheng, D.J. Sellmyer, Phys. Rev. B 62, 3900 (2000)

    Article  Google Scholar 

  7. C. Ross et al. , J. Vac. Sci. Techn. B 17, 3168 (1999)

    Article  Google Scholar 

  8. R. O’Barr, R.M. Lederman, S. Schultz, W. Xu, A. Scherer, R. J. Tonicci, J. Appl. Phys. 79, 5303 (1996)

    Article  Google Scholar 

  9. T.M. Witney, J.S. Jiang, P. Searson, C. Chien, Science 261, 1316 (1993)

    Google Scholar 

  10. L. Piraux, J.M. George, J.F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, A. Fert, Appl. Phys. Lett. 65, 2484 (1994)

    Article  Google Scholar 

  11. C.L. Chien et al. , in reference [12], p. 146

  12. H. Masuda, K. Fukuda, Science 268, 1466 (1995)

    Google Scholar 

  13. K. Nielsch, R. Wehrspohn, J. Barthel, J. Kirschner, U. Gösele, S. Fischer, H. Kronmüller, Appl. Phys. Lett. 79, 1360 (2001)

    Article  Google Scholar 

  14. A. Fert, L. Piraux, J. Magn. Magn. Mater. 200, 338(1999)

    Article  Google Scholar 

  15. D.J. Sellmyer, M. Zheng, R. Skomski, J. Phys.: Condens. Matter 13, R433 (2001)

  16. P.M. Paulus, F. Luis, M. Kröll, G. Schmid, L.J. de Jongh, J. Magn. Magn. Mater. 224, 180 (2001)

    Article  Google Scholar 

  17. K. Nielsch et al. , J. Magn. Magn. Mater. 249, 234 (2002)

    Article  Google Scholar 

  18. W. Schwarzacher, K. Attenborough, A. Michel, G. Nabiyouni, J.P. Meier, J. Magn. Magn. Mater. 165, 23 (1997)

    Article  Google Scholar 

  19. J. Lee et al. , J. Appl. Phys. 91, 8513 (2002)

    Article  Google Scholar 

  20. A. Blondel, J.P. Meier, B. Doudin, J.Ph. Ansermet, Appl. Phys. Lett. 65, 3019 (1994)

    Article  Google Scholar 

  21. A. Radulescu, U. Ebels, Y. Henry, K. Ounadjela, J.L. Duvail, L. Piraux, IEEE Trans Magn. 36, 3062 (2000)

    Article  Google Scholar 

  22. T. Ohgai, X. Hoffer, L. Gravier, J.E. Wegrowe, J.P. Ansermet, Nanotechnology 14, 978 (2003)

    Article  Google Scholar 

  23. S. Dubois, J. Colin, J.L. Duvail, L. Piraux, Phys. Rev. B 61, 14315 (2000)

    Article  Google Scholar 

  24. J.M. García, A. Asenjo, M. Vázquez, P. Aranda, E. Ruiz-Hiztky, IEEE Trans. Magn. 36, 2981 (2000)

    Article  Google Scholar 

  25. G. Hadjipanayis et al. , J. Appl. Phys. 91, 6869 (2002)

    Article  Google Scholar 

  26. T.G. Sorop, C. Untiedt, F. Luis, M. Kröll, M. Rasa, J. de Jongh, Phys. Rev. B 67, 14402 (2003)

    Article  Google Scholar 

  27. K. Nielsch, R. Hertel, R.B. Wehrspohn, J. Barthel, J. Kirschner, U. Gösele, S.F. Fischer, H. Kronmüller, IEEE Trans. Magn. 38, 2571 (2002)

    Article  Google Scholar 

  28. R. Hertel, in reference [13] p. 251; H. Forster et al. , in reference [13] p. 181

  29. M. Vázquez, D.-X. Chen, IEEE Trans. Magn. 31, 1229 (1995)

    Article  Google Scholar 

  30. M. Kröll et al. , in reference [13] p. 241; J. Stankiewicz, F. Luis, A. Camón, M. Kröll, J. Bartolomé, W. Blau, J. Magn. Magn. Mater. (in press)

  31. R. Skomski, H. Zeng, D.J. Sellmyer, in reference [13] p. 175

  32. U. Ebels, A. Radulescu, Y. Henry, L. Piraux, K. Ounadjela, Phys. Rev. Lett. 84, 983 (2000)

    Article  Google Scholar 

  33. Y. Henry, A. Iovan, J.M. George, L. Piraux, Phys. Rev. B 66, 184430 (2002)

    Article  Google Scholar 

  34. A. Encinas-Oropesa, M. Demand, L. Piraux, I. Huynen, U. Ebels, Phys. Rev. B 63, 104415 (2001); M. Demand et al. , in reference [13] p. 228

    Article  Google Scholar 

  35. U. Ebels, J.L. Duvail, P.E. Wigen, L. Piraux, L.D. Buda, K. Ounadjela, Phys. Rev. B 64, 14421 (2001)

    Article  Google Scholar 

  36. K. Nielsch, F. Müller, A.P. Li, U. Gösele, Adv. Mater. 12, 342 (2000)

    Article  Google Scholar 

  37. R.M. Metzger, V.V. Konovalov, M. Sum, T. Xu, G. Zangari, B. Xu, M. Benakli, W.D. Doyle, IEEE Trans. Magn. 36, 1 (2000)

    Article  Google Scholar 

  38. M. Hernández-Vélez, K. Pirota, F. Paszti, D. Navas, A. Climent, I. Schmytko, M. Vázquez (submitted)

  39. K. Pirota, D. Navas, M. Hernández-Vélez, K. Nielsch, M. Vázquez, J. Alloys Comp. 369, 18 (2004)

    Article  Google Scholar 

  40. M. Vázquez, K. Nielsch, P. Vargas, J. Velázquez, D. Navas, K. Pirota, M. Hernández-Vélez, E. Vogel, J. Cartes, R.B. Wehrspohn, U. Gösele, Physica B 343, 395 (2004)

    Google Scholar 

  41. R. Arias, D.L. Mills, Phys. Rev. B 67, 94423 (2003)

    Article  Google Scholar 

  42. Z.W. Wang et al. , Phys. Rev. Lett. 89, 27201 (2002)

    Article  Google Scholar 

  43. C. Ramos, M. Vázquez, K. Nielsch, K. Pirota, J. Rivas, R.B. Wehrspohn, M. Tovar, R.D. Sánchez, U. Gösele, Proc. ICM’2003 (J. Magn. Magn. Mater. in press)

  44. E.O. Samwel, P.R. Bissell, J.C. Lodder, J. Magn. Magn. Mater. 115, 327 (1992)

    Article  Google Scholar 

  45. J. Velázquez, M. Vázquez, IEEE Trans. Magn. 38, 2477 (2002)

    Article  Google Scholar 

  46. J. Velázquez, C. García, M. Vázquez, A. Hernando, Phys. Rev. B 54, 9903 (1995)

    Article  Google Scholar 

  47. J. Velázquez K. Pirota, M. Vázquez, IEEE Trans. Magn. 39, 249 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vázquez.

Additional information

Received: 24 November 2003, Published online: 15 June 2004

PACS:

75.60.Jk Magnetization reversal mechanisms - 81.15.Pq Electrodeposition, electroplating

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vázquez, M., Hernández-Vélez, M., Pirota, K. et al. Arrays of Ni nanowires in alumina membranes: magnetic properties and spatial ordering. Eur. Phys. J. B 40, 489–497 (2004). https://doi.org/10.1140/epjb/e2004-00163-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00163-4

Keywords

Navigation