Skip to main content
Log in

Moving away from singly-magic nuclei with Gorkov Green’s function theory

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Ab initio calculations of bulk nuclear properties (ground-state energies, root-mean-square charge radii and charge density distributions) are presented for seven complete isotopic chains around calcium, from argon to chromium. Calculations are performed within the Gorkov self-consistent Green’s function approach at second order and make use of two state-of-the-art two- plus three-nucleon Hamiltonians, \(NN\)+\(3N\text {(lnl)}\) and NNLO\(_{\text {sat}}\). An overall good agreement with available experimental data is found, in particular for differential energies (charge radii) when the former (latter) interaction is employed. Remarkably, neutron magic numbers \(N=28,32,34\) emerge and evolve following experimental trends. In contrast, pairing gaps are systematically underestimated. General features of the isotopic dependence of charge radii are also reproduced, as well as charge density distributions. A deterioration of the theoretical description is observed for certain nuclei and ascribed to the inefficient account of (static) quadrupole correlations in the present many-body truncation scheme. In order to resolve these limitations, we advocate the extension of the formalism towards incorporating breaking of rotational symmetry or, alternatively, performing a stochastic sampling of the self-energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical work and no experimental data were generated. Data associated to the theoretical simulations can be obtained from the authors upon request.]

Notes

  1. This automatically imposes the same restriction on the \(e_{2\text {max}}\) at play in three-body operators, for which then \(\left( e^{3\text {-body}}_{1\text {max}}, e^{3\text {-body}}_{2\text {max}}, e^{3\text {-body}}_{3\text {max}}\right) = (13, 16, 16)\).

  2. A notable exception is represented by energy differences near a closed shell, where errors related to the breaking of particle-number do not cancel between a closed-shell and and open-shell system.

  3. Present calculations could not be extended beyond \(N=40\) due to convergence issues, see discussion in Ref. [8] for more details.

  4. For potassium only \(S_\text {1p}\) can be computed, while for argon none of the two separation energies is available in the present calculations.

  5. Experimentally, the dripline is typically established by means of a void observation of one or several isotopes rather than by determining a negative value of \(S_\text {1p}\) or \(S_\text {2p}\).

  6. Note that \(\varDelta ^{(3)}\) corresponds to half of the energy difference between the lowest unoccupied quasiparticle and the highest occupied quasihole states, that is the particle-hole neutron gap at the Fermi surface. At subshell closures, this is dominated by the gap among different nuclear orbits. However, for open neutron shells only the pairing contribution remains.

  7. Only charge radii of bound isotopes are shown in the following, i.e. in Figs. 11, 12 and 13. While all computed argon and calcium nuclei are found to be bound, titanium and chromium isotopes with \(N=14,16,18\) result unbound in the present calculations (with both \(NN\)+\(3N\text {(lnl)}\) and NNLO\(_{\text {sat}}\) interactions).

  8. Notice that this differentiation also applies to odd-Z chains around calcium and extends up to iron, see Ref. [80].

References

  1. W.H. Dickhoff, C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004). https://doi.org/10.1016/j.ppnp.2004.02.038

    Article  ADS  Google Scholar 

  2. K. Kowalski, D.J. Dean, M. Hjorth-Jensen, T. Papenbrock, P. Piecuch, Phys. Rev. Lett. 92, 132501 (2004). https://doi.org/10.1103/PhysRevLett.92.132501

    Article  ADS  Google Scholar 

  3. S.K. Bogner, R.J. Furnstahl, A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010). https://doi.org/10.1016/j.ppnp.2010.03.001

    Article  ADS  Google Scholar 

  4. S. Binder, J. Langhammer, A. Calci, R. Roth, Phys. Lett. B 736, 119 (2014). https://doi.org/10.1016/j.physletb.2014.07.010

    Article  ADS  Google Scholar 

  5. H. Hergert, S.K. Bogner, T.D. Morris, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. C 90, 041302 (2014). https://doi.org/10.1103/PhysRevC.90.041302

    Article  ADS  Google Scholar 

  6. G. Hagen, G.R. Jansen, T. Papenbrock, Phys. Rev. Lett. 117, 172501 (2016). https://doi.org/10.1103/PhysRevLett.117.172501

    Article  ADS  Google Scholar 

  7. R. Taniuchi et al., Nature 569, 53 (2019). https://doi.org/10.1038/s41586-019-1155-x

    Article  ADS  Google Scholar 

  8. V. Somà, P. Navrátil, F. Raimondi, C. Barbieri, T. Duguet, Phys. Rev. C 101, 014318 (2020). https://doi.org/10.1103/PhysRevC.101.014318

    Article  ADS  Google Scholar 

  9. T.D. Morris, J. Simonis, S.R. Stroberg, C. Stumpf, G. Hagen, J.D. Holt, G.R. Jansen, T. Papenbrock, R. Roth, A. Schwenk, Phys. Rev. Lett. 120, 152503 (2018). https://doi.org/10.1103/PhysRevLett.120.152503

    Article  ADS  Google Scholar 

  10. P. Gysbers et al., Nature Phys. 15, 428 (2019). https://doi.org/10.1038/s41567-019-0450-7

    Article  ADS  Google Scholar 

  11. P. Arthuis, C. Barbieri, M. Vorabbi, P. Finelli, Phys. Rev. Lett. 125, 182501 (2020). https://doi.org/10.1103/PhysRevLett.125.182501

    Article  ADS  Google Scholar 

  12. Z. Rolik, A. Szabados, P.R. Surján, J. Chem. Phys. 119, 1922 (2003). https://doi.org/10.1063/1.1584424

    Article  ADS  Google Scholar 

  13. P.R. Surján, Z. Rolik, A. Szabados, D. Köhalmi, Ann. der Phys. 13, 223 (2004). https://doi.org/10.1002/andp.200310074

    Article  ADS  MathSciNet  Google Scholar 

  14. B.R. Barrett, P. Navratil, J.P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013). https://doi.org/10.1016/j.ppnp.2012.10.003

    Article  ADS  Google Scholar 

  15. E. Gebrerufael, K. Vobig, H. Hergert, R. Roth, Phys. Rev. Lett. 118, 152503 (2017). https://doi.org/10.1103/PhysRevLett.118.152503

    Article  ADS  Google Scholar 

  16. H. Hergert, Phys. Scripta 92, 023002 (2017). https://doi.org/10.1088/1402-4896/92/2/023002

    Article  ADS  Google Scholar 

  17. A. Tichai, E. Gebrerufael, K. Vobig, R. Roth, Phys. Lett. B 786, 448 (2018a). https://doi.org/10.1016/j.physletb.2018.10.029

    Article  ADS  Google Scholar 

  18. S.K. Bogner, H. Hergert, J.D. Holt, A. Schwenk, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. Lett. 113, 142501 (2014). https://doi.org/10.1103/PhysRevLett.113.142501

    Article  ADS  Google Scholar 

  19. G.R. Jansen, J. Engel, G. Hagen, P. Navratil, A. Signoracci, Phys. Rev. Lett. 113, 142502 (2014). https://doi.org/10.1103/PhysRevLett.113.142502

    Article  ADS  Google Scholar 

  20. S.R. Stroberg, S.K. Bogner, H. Hergert, J.D. Holt, Ann. Rev. Nucl. Part. Sci. 69, 307 (2019). https://doi.org/10.1146/annurev-nucl-101917-021120

    Article  ADS  Google Scholar 

  21. T. Duguet, J. Phys. G: Nucl. Particle Phys. 42, 025107 (2014). https://doi.org/10.1088/0954-3899/42/2/025107

    Article  ADS  Google Scholar 

  22. T. Duguet, A. Signoracci, J. Phys. G 44, 015103 (2017). http://stacks.iop.org/0954-3899/44/i=1/a=015103

  23. Y. Qiu, T.M. Henderson, T. Duguet, G.E. Scuseria, Phys. Rev. C 99, 044301 (2019). https://doi.org/10.1103/PhysRevC.99.044301

    Article  ADS  Google Scholar 

  24. M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003). https://doi.org/10.1103/RevModPhys.75.121

    Article  ADS  Google Scholar 

  25. V. Somà, T. Duguet, C. Barbieri, Phys. Rev. C 84, 064317 (2011). https://doi.org/10.1103/PhysRevC.84.064317

    Article  ADS  Google Scholar 

  26. A. Signoracci, T. Duguet, G. Hagen, G.R. Jansen, Phys. Rev. C 91, 064320 (2015). https://doi.org/10.1103/PhysRevC.91.064320

    Article  ADS  Google Scholar 

  27. A. Tichai, P. Arthuis, T. Duguet, H. Hergert, V. Somà, R. Roth, Phys. Lett. B 786, 195 (2018b). https://doi.org/10.1016/j.physletb.2018.09.044

    Article  ADS  Google Scholar 

  28. A. Tichai, R. Roth, T. Duguet, Front. Phys. 8, 164 (2020). https://doi.org/10.3389/fphy.2020.00164

    Article  Google Scholar 

  29. J.M. Yao, B. Bally, J. Engel, R. Wirth, T.R. Rodríguez, H. Hergert, Phys. Rev. Lett. 124, 232501 (2020). https://doi.org/10.1103/PhysRevLett.124.232501

    Article  ADS  Google Scholar 

  30. S.J. Novario, G. Hagen, G.R. Jansen, T. Papenbrock, Phys. Rev. C 102, 051303 (2020). https://doi.org/10.1103/PhysRevC.102.051303

    Article  ADS  Google Scholar 

  31. H. Hergert, Front. Phys. 8, 379 (2020). https://doi.org/10.3389/fphy.2020.00379

    Article  Google Scholar 

  32. M. Frosini, T. Duguet, B. Bally, Y. Beaujeault-Taudière, J.-P. Ebran, V. Somà, (2021), arXiv:2102.10120 [nucl-th]

  33. V. Somà, C. Barbieri, T. Duguet, Phys. Rev. C 87, 011303 (2013). https://doi.org/10.1103/PhysRevC.87.011303

    Article  ADS  Google Scholar 

  34. V. Somà, A. Cipollone, C. Barbieri, P. Navrátil, T. Duguet, Phys. Rev. C 89, 061301 (2014a). https://doi.org/10.1103/PhysRevC.89.061301

    Article  ADS  Google Scholar 

  35. V. Lapoux, V. Somà, C. Barbieri, H. Hergert, J.D. Holt, S.R. Stroberg, Phys. Rev. Lett. 117, 052501 (2016). https://doi.org/10.1103/PhysRevLett.117.052501

    Article  ADS  Google Scholar 

  36. V. Somà, Front. Phys. 8, 340 (2020). https://doi.org/10.3389/fphy.2020.00340

    Article  Google Scholar 

  37. E. Leistenschneider, M. P. Reiter, S. Ayet San Andrés, B. Kootte, J. D. Holt, P. Navrátil, C. Babcock, C. Barbieri, B. R. Barquest, J. Bergmann, J. Bollig, T. Brunner, E. Dunling, A. Finlay, H. Geissel, L. Graham, F. Greiner, H. Hergert, C. Hornung, C. Jesch, R. Klawitter, Y. Lan, D. Lascar, K. G. Leach, W. Lippert, J. E. McKay, S. F. Paul, A. Schwenk, D. Short, J. Simonis, V. Somà, R. Steinbrügge, S. R. Stroberg, R. Thompson, M. E. Wieser, C. Will, M. Yavor, C. Andreoiu, T. Dickel, I. Dillmann, G. Gwinner, W. R. Plaß, C. Scheidenberger, A. A. Kwiatkowski, J. Dilling, Phys. Rev. Lett. 120, 062503 (2018). https://doi.org/10.1103/PhysRevLett.120.062503

  38. C. Barbieri, N. Rocco, V. Somà, Phys. Rev. C 100, 062501 (2019). https://doi.org/10.1103/PhysRevC.100.062501

    Article  ADS  Google Scholar 

  39. M. Mougeot, D. Atanasov, C. Barbieri, K. Blaum, M. Breitenfeld, A. de Roubin, T. Duguet, S. George, F. Herfurth, A. Herlert, J.D. Holt, J. Karthein, D. Lunney, V. Manea, P. Navrátil, D. Neidherr, M. Rosenbusch, L. Schweikhard, A. Schwenk, V. Somà, A. Welker, F. Wienholtz, R.N. Wolf, K. Zuber, Phys. Rev. C 102, 014301 (2020). https://doi.org/10.1103/PhysRevC.102.014301

    Article  ADS  Google Scholar 

  40. A. Ekström, G.R. Jansen, K.A. Wendt, G. Hagen, T. Papenbrock, B.D. Carlsson, C. Forssén, M. Hjorth-Jensen, P. Navrátil, W. Nazarewicz, Phys. Rev. C 91, 051301 (2015). https://doi.org/10.1103/PhysRevC.91.051301

    Article  ADS  Google Scholar 

  41. V. Somà, C. Barbieri, T. Duguet, Phys. Rev. C 89, 024323 (2014b). https://doi.org/10.1103/PhysRevC.89.024323

    Article  ADS  Google Scholar 

  42. D.R. Entem, R. Machleidt, Phys. Rev. C 68, 041001 (2003). https://doi.org/10.1103/PhysRevC.68.041001

    Article  ADS  Google Scholar 

  43. R. Machleidt, D. Entem, Phys. Rep. 503, 1 (2011). https://doi.org/10.1016/j.physrep.2011.02.001

    Article  ADS  Google Scholar 

  44. A. Carbone, A. Cipollone, C. Barbieri, A. Rios, A. Polls, Phys. Rev. C 88, 054326 (2013). https://doi.org/10.1103/PhysRevC.88.054326

    Article  ADS  Google Scholar 

  45. A. Cipollone, C. Barbieri, P. Navrátil, Phys. Rev. C 92, 014306 (2015). https://doi.org/10.1103/PhysRevC.92.014306

    Article  ADS  Google Scholar 

  46. A. Cipollone, C. Barbieri, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013). https://doi.org/10.1103/PhysRevLett.111.062501

    Article  ADS  Google Scholar 

  47. C. Barbieri, J. Phys.: Conf. Ser. 529, 012005 (2014). https://doi.org/10.1088/1742-6596/529/1/012005

    Article  Google Scholar 

  48. F. Raimondi, C. Barbieri, Phys. Rev. C 97, 054308 (2018). https://doi.org/10.1103/PhysRevC.97.054308

    Article  ADS  Google Scholar 

  49. J. Ripoche, A. Tichai, T. Duguet, Eur. Phys. J. A 56, 40 (2020). https://doi.org/10.1140/epja/s10050-020-00045-8

    Article  ADS  Google Scholar 

  50. M.  Frosini, (2021), private communication

  51. T. Miyagi, T. Abe, M. Kohno, P. Navrátil, R. Okamoto, T. Otsuka, N. Shimizu, S.R. Stroberg, Phys. Rev. C 100, 034310 (2019). https://doi.org/10.1103/PhysRevC.100.034310

    Article  ADS  Google Scholar 

  52. W. Huang, G. Audi, M. Wang, F.G. Kondev, S. Naimi, X. Xu, Chin. Phys. C 41, 030002 (2017). https://doi.org/10.1088/1674-1137/41/3/030002

    Article  ADS  Google Scholar 

  53. S. Michimasa, M. Kobayashi, Y. Kiyokawa, S. Ota, D.S. Ahn, H. Baba, G.P.A. Berg, M. Dozono, N. Fukuda, T. Furuno, E. Ideguchi, N. Inabe, T. Kawabata, S. Kawase, K. Kisamori, K. Kobayashi, T. Kubo, Y. Kubota, C.S. Lee, M. Matsushita, H. Miya, A. Mizukami, H. Nagakura, D. Nishimura, H. Oikawa, H. Sakai, Y. Shimizu, A. Stolz, H. Suzuki, M. Takaki, H. Takeda, S. Takeuchi, H. Tokieda, T. Uesaka, K. Yako, Y. Yamaguchi, Y. Yanagisawa, R. Yokoyama, K. Yoshida, S. Shimoura, Phys. Rev. Lett. 121, 022506 (2018). https://doi.org/10.1103/PhysRevLett.121.022506

    Article  ADS  Google Scholar 

  54. X. Xu et al., Phys. Rev. C 99, 064303 (2019). https://doi.org/10.1103/PhysRevC.99.064303

    Article  ADS  Google Scholar 

  55. T. Duguet, P. Bonche, P.-H. Heenen, J. Meyer, Phys. Rev. C 65, 014311 (2001a). https://doi.org/10.1103/PhysRevC.65.014311

    Article  ADS  Google Scholar 

  56. S.R. Stroberg, J.D. Holt, A. Schwenk, J. Simonis, Phys. Rev. Lett. 126, 022501 (2021). https://doi.org/10.1103/PhysRevLett.126.022501

    Article  ADS  Google Scholar 

  57. D.J. Dean, M. Hjorth-Jensen, Rev. Mod. Phys. 75, 607 (2003). https://doi.org/10.1103/RevModPhys.75.607

    Article  ADS  Google Scholar 

  58. T. Duguet, Pairing in finite nuclei from low-momentum two- and three-nucleon interactions, in Fifty Years of Nuclear BCS (2013), pp. 229–242. https://doi.org/10.1142/9789814412490_0017

  59. T. Duguet, T. Lesinski, K. Hebeler, A. Schwenk, Mod. Phys. Lett. A 25, 1989 (2010). https://doi.org/10.1142/S0217732310000812

    Article  ADS  Google Scholar 

  60. T. Lesinski, K. Hebeler, T. Duguet, A. Schwenk, J. Phys. G 39, 015108 (2012). https://doi.org/10.1088/0954-3899/39/1/015108

    Article  ADS  Google Scholar 

  61. F. Barranco, R. Broglia, G. Colò, E. Vigezzi, P. Bortignon, Eur. Phys. J. A 21, 57 (2004). https://doi.org/10.1140/epja/i2003-10185-0

    Article  ADS  Google Scholar 

  62. G. Gori, F. Ramponi, F. Barranco, P.F. Bortignon, R.A. Broglia, G. Colò, E. Vigezzi, Phys. Rev. C 72, 011302 (2005). https://doi.org/10.1103/PhysRevC.72.011302

    Article  ADS  Google Scholar 

  63. A. Pastore, F. Barranco, R.A. Broglia, E. Vigezzi, Phys. Rev. C 78, 024315 (2008). https://doi.org/10.1103/PhysRevC.78.024315

    Article  ADS  Google Scholar 

  64. A. Idini, F. Barranco, E. Vigezzi, R. Broglia, J. Phys. Conf. Ser. 312, 092032 (2011). https://doi.org/10.1088/1742-6596/312/9/092032

    Article  Google Scholar 

  65. T. Duguet, P. Bonche, P.-H. Heenen, J. Meyer, Phys. Rev. C 65, 014310 (2001b). https://doi.org/10.1103/PhysRevC.65.014310

    Article  ADS  Google Scholar 

  66. J. Dobaczewski, W. Nazarewicz, J. Skalski, T. Werner, Phys. Rev. Lett. 60, 2254 (1988). https://doi.org/10.1103/PhysRevLett.60.2254

    Article  ADS  Google Scholar 

  67. M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. C 73, 034322 (2006). https://doi.org/10.1103/PhysRevC.73.034322

    Article  ADS  Google Scholar 

  68. K. Van Houcke, F. Werner, E. Kozik, N. Prokof’ev, B. Svistunov, M.J.H. Ku, A.T. Sommer, L.W. Cheuk, A. Schirotzek, M.W. Zwierlein, Nature Phys. 8, 366 (2012). https://doi.org/10.1038/nphys2273

    Article  ADS  Google Scholar 

  69. I. Angeli, K. Marinova, At. Data Nucl. Data Tables 99, 69 (2013). https://doi.org/10.1016/j.adt.2011.12.006

    Article  ADS  Google Scholar 

  70. R. F. Garcia Ruiz, M. L. Bissell, K. Blaum, A. Ekström, N. Frömmgen, G. Hagen, M. Hammen, K. Hebeler, J. D. Holt, G. R. Jansen, M. Kowalska, K. Kreim, W. Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, T. Papenbrock, J. Papuga, A. Schwenk, J. Simonis, K. A. Wendt, D. T. Yordanov, Nature Phys. 12, 594 (2016). https://doi.org/10.1038/nphys3645

  71. A.J. Miller, K. Minamisono, A. Klose, D. Garand, C. Kujawa, J.D. Lantis, Y. Liu, B. Maaß, P.F. Mantica, W. Nazarewicz, W. Nörtershäuser, S.V. Pineda, P.G. Reinhard, D.M. Rossi, F. Sommer, C. Sumithrarachchi, A. Teigelhöfer, J. Watkins, Nature Phys. 15, 432 (2019). https://doi.org/10.1038/s41567-019-0416-9

    Article  ADS  Google Scholar 

  72. W. Xiong et al., Nature 575, 147 (2019). https://doi.org/10.1038/s41586-019-1721-2

    Article  ADS  Google Scholar 

  73. P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 80, 633 (2008). https://doi.org/10.1103/RevModPhys.80.633

    Article  ADS  Google Scholar 

  74. J. Simonis, S.R. Stroberg, K. Hebeler, J.D. Holt, A. Schwenk, Phys. Rev. C 96, 014303 (2017). https://doi.org/10.1103/PhysRevC.96.014303

    Article  ADS  Google Scholar 

  75. T. Hüther, K. Vobig, K. Hebeler, R. Machleidt, R. Roth, Phys. Lett. B 808, 135651 (2020). https://doi.org/10.1016/j.physletb.2020.135651

  76. J.L. Friar, J. Martorell, D.W.L. Sprung, Phys. Rev. A 56, 4579 (1997). https://doi.org/10.1103/PhysRevA.56.4579

    Article  ADS  Google Scholar 

  77. C.J. Horowitz, J. Piekarewicz, Phys. Rev. C 86, 045503 (2012). https://doi.org/10.1103/PhysRevC.86.045503

    Article  ADS  Google Scholar 

  78. H.-W. Hammer, U.-G. Meißner, Sci. Bull. 65, 257 (2020). https://doi.org/10.1016/j.scib.2019.12.012

    Article  Google Scholar 

  79. CODATA recommended values of the fundamental physical constants (2018), https://physics.nist.gov/cgi-bin/cuu/Value?rp

  80. R. Garcia Ruiz, A. Vernon, Eur. Phys. J. A 56, 136 (2020). https://doi.org/10.1140/epja/s10050-020-00134-8

    Article  ADS  Google Scholar 

  81. F. Barranco, R. Broglia, Phys. Lett. B 151, 90 (1985). https://doi.org/10.1016/0370-2693(85)91391-7

    Article  ADS  Google Scholar 

  82. E. Caurier, K. Langanke, G. Martínez-Pinedo, F. Nowacki, P. Vogel, Phys. Lett. B 522, 240 (2001). https://doi.org/10.1016/S0370-2693(01)01246-1

    Article  ADS  Google Scholar 

  83. C. Barbieri, D. Van Neck, W.H. Dickhoff, Phys. Rev. A 76, 052503 (2007). https://doi.org/10.1103/PhysRevA.76.052503

    Article  ADS  Google Scholar 

  84. P.-G. Reinhard, W. Nazarewicz, Phys. Rev. C 95, 064328 (2017). https://doi.org/10.1103/PhysRevC.95.064328

    Article  ADS  Google Scholar 

  85. H.N. Liu, A. Obertelli, P. Doornenbal, C.A. Bertulani, G. Hagen, J.D. Holt, G.R. Jansen, T.D. Morris, A. Schwenk, R. Stroberg, N. Achouri, H. Baba, F. Browne, D. Calvet, F. Château, S. Chen, N. Chiga, A. Corsi, M.L. Cortés, A. Delbart, J.-M. Gheller, A. Giganon, A. Gillibert, C. Hilaire, T. Isobe, T. Kobayashi, Y. Kubota, V. Lapoux, T. Motobayashi, I. Murray, H. Otsu, V. Panin, N. Paul, W. Rodriguez, H. Sakurai, M. Sasano, D. Steppenbeck, L. Stuhl, Y.L. Sun, Y. Togano, T. Uesaka, K. Wimmer, K. Yoneda, O. Aktas, T. Aumann, L.X. Chung, F. Flavigny, S. Franchoo, I. Gašparić, R.-B. Gerst, J. Gibelin, K.I. Hahn, D. Kim, T. Koiwai, Y. Kondo, P. Koseoglou, J. Lee, C. Lehr, B.D. Linh, T. Lokotko, M. MacCormick, K. Moschner, T. Nakamura, S.Y. Park, D. Rossi, E. Sahin, D. Sohler, P.-A. Söderström, S. Takeuchi, H. Törnqvist, V. Vaquero, V. Wagner, S. Wang, V. Werner, X. Xu, H. Yamada, D. Yan, Z. Yang, M. Yasuda, L. Zanetti, Phys. Rev. Lett. 122, 072502 (2019). https://doi.org/10.1103/PhysRevLett.122.072502

    Article  ADS  Google Scholar 

  86. S. Chen, J. Lee, P. Doornenbal, A. Obertelli, C. Barbieri, Y. Chazono, P. Navrátil, K. Ogata, T. Otsuka, F. Raimondi, V. Somà, Y. Utsuno, K. Yoshida, H. Baba, F. Browne, D. Calvet, F. Château, N. Chiga, A. Corsi, M.L. Cortés, A. Delbart, J.-M. Gheller, A. Giganon, A. Gillibert, C. Hilaire, T. Isobe, J. Kahlbow, T. Kobayashi, Y. Kubota, V. Lapoux, H.N. Liu, T. Motobayashi, I. Murray, H. Otsu, V. Panin, N. Paul, W. Rodriguez, H. Sakurai, M. Sasano, D. Steppenbeck, L. Stuhl, Y.L. Sun, Y. Togano, T. Uesaka, K. Wimmer, K. Yoneda, N. Achouri, O. Aktas, T. Aumann, L.X. Chung, F. Flavigny, S. Franchoo, I. Gašparić, R.-B. Gerst, J. Gibelin, K.I. Hahn, D. Kim, T. Koiwai, Y. Kondo, P. Koseoglou, C. Lehr, B.D. Linh, T. Lokotko, M. MacCormick, K. Moschner, T. Nakamura, S.Y. Park, D. Rossi, E. Sahin, D. Sohler, P.-A. Söderström, S. Takeuchi, H. Törnqvist, V. Vaquero, V. Wagner, S. Wang, V. Werner, X. Xu, H. Yamada, D. Yan, Z. Yang, M. Yasuda, L. Zanetti, Phys. Rev. Lett. 123, 142501 (2019). https://doi.org/10.1103/PhysRevLett.123.142501

    Article  ADS  Google Scholar 

  87. W. Bertozzi, J. Friar, J. Heisenberg, J. Negele, Phys. Lett. B 41, 408 (1972). https://doi.org/10.1016/0370-2693(72)90662-4

    Article  ADS  Google Scholar 

  88. H. Chandra, G. Sauer, Phys. Rev. C 13, 245 (1976). https://doi.org/10.1103/PhysRevC.13.245

    Article  ADS  Google Scholar 

  89. B. Brown, S. Massen, P. Hodgson, Phys. Lett. B 85, 167 (1979). https://doi.org/10.1016/0370-2693(79)90569-0

    Article  ADS  Google Scholar 

  90. J.W. Negele, Phys. Rev. C 1, 1260 (1970). https://doi.org/10.1103/PhysRevC.1.1260

    Article  ADS  Google Scholar 

  91. N. Rocco, C. Barbieri, Phys. Rev. C 98, 025501 (2018). https://doi.org/10.1103/PhysRevC.98.025501

    Article  ADS  Google Scholar 

  92. H. De Vries, C.W. De Jager, C. De Vries, At. Data Nucl. Data Tabl. 36, 495 (1987). https://doi.org/10.1016/0092-640X(87)90013-1

    Article  ADS  Google Scholar 

  93. A. Porro, V. Somà, A. Tichai, T. Duguet, (2021). arXiv:2103.14544 [nuclth]

  94. A. Idini, C. Barbieri, P. Navrátil, Phys. Rev. Lett. 123, 092501 (2019). https://doi.org/10.1103/PhysRevLett.123.092501

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank M. Frosini for providing the particle-number projected HFB results discussed in Sect. 2, as well as R. Garcia Ruiz and F. Raimondi for useful exchanges. Calculations were performed by using HPC resources from GENCI-TGCC (Contracts no. A005057392, A007057392) and at the DiRAC Complexity system at the University of Leicester (BIS National E-infrastructure capital Grant no. ST/K000373/1 and STFC Grant no. ST/K0003259/1). This work was supported by the United Kingdom Science and Technology Facilities Council (STFC) under Grant no. ST/L005816/1 and in part by the NSERC Grant no. SAPIN-2016-00033. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Somà.

Additional information

Communicated by Jerome Margueron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somà, V., Barbieri, C., Duguet, T. et al. Moving away from singly-magic nuclei with Gorkov Green’s function theory. Eur. Phys. J. A 57, 135 (2021). https://doi.org/10.1140/epja/s10050-021-00437-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00437-4

Navigation