Skip to main content
Log in

Adiabatic projection method with Euclidean time subspace projection

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Euclidean time projection is a powerful tool that uses exponential decay to extract the low-energy information of quantum systems. The adiabatic projection method, which is based on Euclidean time projection, is a procedure for studying scattering and reactions on the lattice. The method constructs the adiabatic Hamiltonian that gives the low-lying energies and wave functions of two-cluster systems. In this paper we seek the answer to the question whether an adiabatic Hamiltonian constructed in a smaller subspace of the two-cluster state space can still provide information on the low-lying spectrum and the corresponding wave functions. We present the results from our investigations on constructing the adiabatic Hamiltonian using Euclidean time projection and extracting details of the low-energy spectrum and wave functions by diagonalizing it. In our analyses we consider systems of fermion-fermion and fermion-dimer interacting via a zero-range attractive potential in one dimension, and fermion-fermion interacting via an attractive Gaussian potential in three dimensions. The results presented here provide a guide for improving the adiabatic projection method and for reducing the computational costs of large-scale calculations of ab initio nuclear scattering and reactions using Monte Carlo methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.A. Weaver, S.E. Woosley, Phys. Rep. 227, 65 (1993)

    Article  ADS  Google Scholar 

  2. E.G. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011) arXiv:1004.2318 [nucl-ex]

    Article  ADS  Google Scholar 

  3. A.D. Leva, L. Gialanella, F. Strieder, J. Phys. Conf. Ser. 665, 012002 (2016)

    Article  Google Scholar 

  4. K.M. Nollett, S.C. Pieper, R.B. Wiringa, J. Carlson, G.M. Hale, Phys. Rev. Lett. 99, 022502 (2007) arXiv:nucl-th/0612035

    Article  ADS  Google Scholar 

  5. P. Navratil, S. Quaglioni, Phys. Rev. Lett. 108, 042503 (2012) arXiv:1110.0460 [nucl-th]

    Article  ADS  Google Scholar 

  6. G. Hagen, N. Michel, Phys. Rev. C 86, 021602 (2012) arXiv:1206.2336 [nucl-th]

    Article  ADS  Google Scholar 

  7. S. Quaglioni, C. Romero-Redondo, P. Navratil, Phys. Rev. C 88, 034320 (2013) 94

    Article  ADS  Google Scholar 

  8. S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, H. Krebs, T.A. Lähde, T. Luu, Ulf-G. Meißner, Nature 528, 111 (2015) arXiv:1506.03513 [nucl-th]

    Article  ADS  Google Scholar 

  9. P. Navratil, S. Quaglioni, G. Hupin, C. Romero-Redondo, A. Calci, Phys. Scr. 91, 053002 (2016) arXiv:1601.03765 [nucl-th]

    Article  ADS  Google Scholar 

  10. J. Dohet-Eraly, P. Navratil, S. Quaglioni, W. Horiuchi, G. Hupin, F. Raimondi, Phys. Lett. B 757, 430 (2016) arXiv:1510.07717 [nucl-th]

    Article  ADS  Google Scholar 

  11. T.A. Lähde, U.-G. Meißner, Lect. Notes Phys. 957, 1 (2019)

    Article  Google Scholar 

  12. G. Rupak, D. Lee, Phys. Rev. Lett. 111, 032502 (2013) arXiv:1302.4158 [nucl-th]

    Article  ADS  Google Scholar 

  13. M. Pine, D. Lee, G. Rupak, Eur. Phys. J. A 49, 151 (2013) arXiv:1309.2616 [nucl-th]

    Article  ADS  Google Scholar 

  14. S. Elhatisari, D. Lee, Phys. Rev. C 90, 064001 (2014) arXiv:1407.2784 [nucl-th]

    Article  ADS  Google Scholar 

  15. G. Rupak, P. Ravi, Phys. Lett. B 741, 301 (2015) arXiv:1411.2436 [nucl-th]

    Article  ADS  Google Scholar 

  16. A. Rokash, M. Pine, S. Elhatisari, D. Lee, E. Epelbaum, H. Krebs, Phys. Rev. C 92, 054612 (2015) arXiv:1505.02967 [nucl-th]

    Article  ADS  Google Scholar 

  17. S. Elhatisari, D. Lee, Ulf-G. Meißner, G. Rupak, Eur. Phys. J. A 52, 174 (2016) arXiv:1603.02333 [nucl-th]

    Article  ADS  Google Scholar 

  18. S. Elhatisari et al., Phys. Rev. Lett. 117, 132501 (2016) arXiv:1602.04539 [nucl-th]

    Article  ADS  Google Scholar 

  19. B.N. Lu, T.A. Lähde, D. Lee, Ulf-G. Meißner, Phys. Rev. D 90, 034507 (2014) arXiv:1403.8056 [nucl-th]

    Article  ADS  Google Scholar 

  20. G. Stellin, S. Elhatisari, Ulf-G. Meißner, Eur. Phys. J. A 54, 232 (2018) arXiv:1809.06109 [nucl-th]

    Article  ADS  Google Scholar 

  21. B.N. Lu, T.A. Lähde, D. Lee, Ulf-G. Meißner, Phys. Lett. B 760, 309 (2016) arXiv:1506.05652 [nucl-th]

    Article  ADS  Google Scholar 

  22. B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, Ulf-G. Meissner, Eur. Phys. J. A 34, 185 (2007) arXiv:0708.1780 [nucl-th]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Elhatisari.

Additional information

Communicated by V. Somà

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhatisari, S. Adiabatic projection method with Euclidean time subspace projection. Eur. Phys. J. A 55, 144 (2019). https://doi.org/10.1140/epja/i2019-12844-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12844-9

Navigation