Skip to main content
Log in

Corrections of two-photon interactions in the fine and hyperfine structure of the P-energy levels of muonic hydrogen

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In the framework of the quasipotential method in quantum electrodynamics we calculate corrections to the nuclear structure proportional to \( r_N^2\) from two-photon exchange amplitudes in the fine and hyperfine structure of P-states in muonic hydrogen, as well as the photon-photon interaction amplitudes, leading to the exchange of the axial vector meson. In constructing the quasipotential of the muon-nucleus interaction, we use the method of projection operators on states of two particles with a definite spin and total angular momentum. Analytical calculation of the matrix elements is performed and contributions to the fine and hyperfine structure of the \( 2P_{1/2}\) and \( 2P_{3/2}\) levels are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Pohl, A. Antognini, F. Nez et al., Nature 466, 213 (2010)

    Article  ADS  Google Scholar 

  2. A. Antognini et al., Science 339, 417 (2013)

    Article  ADS  Google Scholar 

  3. A. Antognini et al., Ann. Phys. (N.Y.) 331, 127 (2013)

    Article  ADS  Google Scholar 

  4. R. Pohl, F. Nez, L.M.P. Fernandes et al., Science 353, 669 (2016)

    Article  ADS  Google Scholar 

  5. Y. Ma et al., Int. J. Mod. Phys. Conf. Ser. 40, 1660046 (2016)

    Article  Google Scholar 

  6. FAMU Collaboration (A. Adamczak et al.), JINST 11, P05007 (2016)

    Article  Google Scholar 

  7. CREMA Collaboration (R. Pohl), J. Phys. Soc. Jpn. 85, 091003 (2016)

    Article  Google Scholar 

  8. P.J. Mohr, D.B. Newell, B.N. Taylor, Rev. Mod. Phys. 88, 035009 (2016) (CODATA Recommended Values of the Fundamental Physical Constants: 2014)

    Article  ADS  Google Scholar 

  9. I. Sick, Prog. Part. Nucl. Phys. 67, 473 (2012)

    Article  ADS  Google Scholar 

  10. C.E. Carlson, Prog. Part. Nucl. Phys. 82, 59 (2015)

    Article  ADS  Google Scholar 

  11. A. Beyer et al., Science 358, 79 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. H. Fleurbaey et al., Phys. Rev. Lett. 120, 183001 (2018)

    Article  ADS  Google Scholar 

  13. R.N. Faustov, A.P. Martynenko, G.A. Martynenko, V.V. Sorokin, Phys. Lett. B 733, 354 (2014)

    Article  ADS  Google Scholar 

  14. R.N. Faustov, A.P. Martynenko, G.A. Martynenko, V.V. Sorokin, Phys. Rev. A 90, 012520 (2014)

    Article  ADS  Google Scholar 

  15. R.N. Faustov, A.P. Martynenko, F.A. Martynenko, V.V. Sorokin, Phys. Lett. B 775, 79 (2017)

    Article  ADS  Google Scholar 

  16. A.E. Dorokhov, N.I. Kochelev, A.P. Martynenko, F.A. Martynenko, R.N. Faustov, Phys. Part. Nucl. Lett. 14, 857 (2017) arXiv:1704.07702 [hep-ph]

    Article  Google Scholar 

  17. A.E. Dorokhov, N.I. Kochelev, A.P. Martynenko, F.A. Martynenko, A.E. Radzhabov, Phys. Lett. B 776, 105 (2018)

    Article  ADS  Google Scholar 

  18. A.E. Dorokhov, N.I. Kochelev, A.P. Martynenko, F.A. Martynenko, A.E. Radzhabov, R.N. Faustov, J. Phys. Conf. Ser. 938, 012042 (2017)

    Article  Google Scholar 

  19. M.I. Eides, H. Grotch, V.A. Shelyuto, Theory of Light Hydrogenic Bound States, Springer Tracts in Modern Physics, Vol. 222 (Springer, Berlin, Heidelbeg, New York, 2007)

  20. H. Grotch, D.R. Yennie, Rev. Mod. Phys. 41, 350 (1969)

    Article  ADS  Google Scholar 

  21. E. Borie, Ann. Phys. 327, 733 (2012)

    Article  ADS  Google Scholar 

  22. C.E. Carlson, M. Vanderhaeghen, Annu. Rev. Nucl. Part. Sci. 57, 171 (2007)

    Article  ADS  Google Scholar 

  23. O. Tomalak, M. Vanderhaeghen, Eur. Phys. J. A 51, 24 (2015)

    Article  ADS  Google Scholar 

  24. O. Tomalak, M. Vanderhaeghen, Phys. Rev. D 90, 013006 (2014)

    Article  ADS  Google Scholar 

  25. C. Peset, A. Pineda, Nucl. Phys. B 887, 69 (2014)

    Article  ADS  Google Scholar 

  26. C. Peset, A. Pineda, JHEP 04, 060 (2017)

    Article  ADS  Google Scholar 

  27. A.P. Martynenko, R.N. Faustov, J. Exp. Theor. Phys. 98, 39 (2004)

    Article  ADS  Google Scholar 

  28. R.N. Faustov, A.P. Martynenko, G.A. Martynenko, V.V. Sorokin, Phys. Rev. A 92, 052512 (2015)

    Article  ADS  Google Scholar 

  29. A.A. Krutov, A.P. Martynenko, F.A. Martynenko, O.S. Sukhorukova, Phys. Rev. A 94, 062505 (2016)

    Article  ADS  Google Scholar 

  30. V.B. Berestetskii, E.M. Lifshits, L.P. Pitaevskii, Quantum Electrodynamics (Nauka, Moscow, 1980)

  31. K. Pachucki, Phys. Rev. A 53, 2092 (1996)

    Article  ADS  Google Scholar 

  32. U.D. Jentschura, Ann. Phys. 326, 500 (2011)

    Article  ADS  Google Scholar 

  33. S.G. Karshenboim, V.G. Ivanov, E.Yu. Korzinin, V.A. Shelyuto, Phys. Rev. A 81, 060501 (2010)

    Article  ADS  Google Scholar 

  34. S.G. Karshenboim, E.Yu. Korzinin, V.A. Shelyuto, V.G. Ivanov, J. Phys. Chem. Ref. Data 44, 031202 (2015)

    Article  ADS  Google Scholar 

  35. B. Franke et al., Eur. Phys. J. D 71, 341 (2017)

    Article  ADS  Google Scholar 

  36. J.J. Krauth et al., Ann. Phys. 366, 168 (2016)

    Article  ADS  Google Scholar 

  37. J.A.M. Vermaseren, FORM, arXiv:math-ph/0010025

  38. J.L. Friar, Ann. Phys. 122, 151 (1979)

    Article  ADS  Google Scholar 

  39. A.P. Martynenko, A.A. Krutov, R.N. Shamsutdinov, Phys. At. Nucl. 77, 786 (2014)

    Article  Google Scholar 

  40. F. Hagelstein, V. Pascalutsa, PoS CD15, 077 (2016)

    Google Scholar 

  41. H.Q. Zhou, H.R. Pang, Phys. Rev. A 92, 032512 (2015)

    Article  ADS  Google Scholar 

  42. N.T. Huong, E. Kou, B. Moussallam, Phys. Rev. D 93, 114005 (2016)

    Article  ADS  Google Scholar 

  43. R.N. Cahn, Phys. Rev. D 35, 3342 (1987)

    Article  ADS  Google Scholar 

  44. V. Pascalutsa, V. Pauk, M. Vanderhaeghen, Phys. Rev. D 85, 116001 (2012)

    Article  ADS  Google Scholar 

  45. G.A. Schuler, F.A. Berends, R. van Gulik, Nucl. Phys. B 523, 423 (1998)

    Article  ADS  Google Scholar 

  46. L3 Collaboration (P. Achard et al.), Phys. Lett. B 526, 269 (2002)

    Article  ADS  Google Scholar 

  47. L3 Collaboration (P. Achard et al.), JHEP 03, 018 (2007)

    Article  Google Scholar 

  48. H. Aihara et al., Phys. Rev. D 38, 1 (1988)

    Article  ADS  Google Scholar 

  49. D.F. Flamm, W. Kummer, Nuovo Cimento 28, 1579 (1963)

    Article  Google Scholar 

  50. S. Fenster, R. Koberle, Y. Nambu, Phys. Lett. 19, 513 (1965)

    Article  ADS  Google Scholar 

  51. S.D. Drell, J.D. Sullivan, Phys. Lett. 19, 516 (1965)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Martynenko.

Additional information

Communicated by V. Somà

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorokhov, A.E., Kochelev, N.I., Martynenko, A.P. et al. Corrections of two-photon interactions in the fine and hyperfine structure of the P-energy levels of muonic hydrogen. Eur. Phys. J. A 54, 131 (2018). https://doi.org/10.1140/epja/i2018-12570-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12570-x

Navigation