Skip to main content
Log in

Thermal electromagnetic radiation in heavy-ion collisions

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We review the potential of precise measurements of electromagnetic probes in relativistic heavy-ion collisions for the theoretical understanding of strongly interacting matter. The penetrating nature of photons and dileptons implies that they can carry undistorted information about the hot and dense regions of the fireballs formed in these reactions and thus provide a unique opportunity to measure the electromagnetic spectral function of QCD matter as a function of both invariant mass and momentum. In particular we report on recent progress on how the medium modifications of the (dominant) isovector part of the vector current correlator (\( \rho\) channel) can shed light on the mechanism of chiral symmetry restoration in the hot and/or dense environment. In addition, thermal dilepton radiation enables novel access to a) the fireball lifetime through the dilepton yield in the low invariant-mass window 0.3 GeV \(\leq M \leq\) 0.7 GeV, and b) the early temperatures of the fireball through the slope of the invariant-mass spectrum in the intermediate-mass region (1.5 GeV \(< M <\) 2.5 GeV). The investigation of the pertinent excitation function suggests that the beam energies provided by the NICA and FAIR projects are in a promising range for a potential discovery of the onset of a first-order phase transition, as signaled by a non-monotonous behavior of both low-mass yields and temperature slopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. McLerran, T. Toimela, Phys. Rev. D 31, 545 (1985)

    Article  ADS  Google Scholar 

  2. C. Gale, J.I. Kapusta, Nucl. Phys. B 357, 65 (1991)

    Article  ADS  Google Scholar 

  3. Particle Data Group (K. Nakamura et al.), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  4. Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B 643, 46 (2006)

    Article  ADS  Google Scholar 

  5. T. Bhattacharya et al., Phys. Rev. Lett. 113, 082001 (2014)

    Article  ADS  Google Scholar 

  6. E.V. Shuryak, Phys. Rep. 61, 71 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  7. R. Rapp, Acta Phys. Pol. B 42, 2823 (2011)

    Article  Google Scholar 

  8. H. van Hees, C. Gale, R. Rapp, Phys. Rev. C 84, 054906 (2011)

    Article  ADS  Google Scholar 

  9. G.J. Gounaris, J.J. Sakurai, Phys. Rev. Lett. 21, 244 (1968)

    Article  ADS  Google Scholar 

  10. N.M. Kroll, T.D. Lee, B. Zumino, Phys. Rev. 157, 1376 (1967)

    Article  ADS  Google Scholar 

  11. P.M. Hohler, R. Rapp, Phys. Lett. B 731, 103 (2014)

    Article  ADS  Google Scholar 

  12. R. Rapp, J. Wambach, Eur. Phys. J. A 6, 415 (1999)

    Article  ADS  Google Scholar 

  13. R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)

    Article  Google Scholar 

  14. T. Hatsuda, Y. Koike, S.-H. Lee, Nucl. Phys. B 394, 221 (1993)

    Article  ADS  Google Scholar 

  15. J.I. Kapusta, E.V. Shuryak, Phys. Rev. D 49, 4694 (1994)

    Article  ADS  Google Scholar 

  16. P.M. Hohler, R. Rapp, Ann. Phys. 368, 70 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. P.M. Hohler, R. Rapp, Phys. Rev. D 89, 125013 (2014)

    Article  ADS  Google Scholar 

  18. G. Aarts, C. Allton, S. Hands, B. Jäger, C. Praki, J.-I. Skullerud, Phys. Rev. D 92, 014503 (2015)

    Article  ADS  Google Scholar 

  19. NA60 Collaboration (H.J. Specht), AIP Conf. Proc. 1322, 1 (2010)

    Google Scholar 

  20. CERES/NA45 Collaboration (D. Adamova et al.), Phys. Rev. Lett. 91, 042301 (2003)

    Article  ADS  Google Scholar 

  21. CERES/NA45 Collaboration (G. Agakichiev et al.), Eur. Phys. J. C 41, 475 (2005)

    Article  ADS  Google Scholar 

  22. STAR Collaboration (P. Huck), Nucl. Phys. A 931, 659 (2014)

    Article  Google Scholar 

  23. STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 92, 024912 (2015)

    Article  ADS  Google Scholar 

  24. R. Rapp, Adv. High Energy Phys. 2013, 148253 (2013)

    Article  Google Scholar 

  25. S. Endres, H. van Hees, J. Weil, M. Bleicher, Phys. Rev. C 91, 054911 (2015)

    Article  ADS  Google Scholar 

  26. S. Endres, H. van Hees, J. Weil, M. Bleicher, Phys. Rev. C 92, 014911 (2015)

    Article  ADS  Google Scholar 

  27. PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 81, 034911 (2010)

    Article  ADS  Google Scholar 

  28. R. Rapp, H. van Hees, Phys. Lett. B 753, 586 (2016)

    Article  ADS  Google Scholar 

  29. PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 93, 014904 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. van Hees.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapp, R., van Hees, H. Thermal electromagnetic radiation in heavy-ion collisions. Eur. Phys. J. A 52, 257 (2016). https://doi.org/10.1140/epja/i2016-16257-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16257-0

Navigation