Skip to main content
Log in

In-medium operator product expansion for heavy-light-quark pseudoscalar mesons

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The operator product expansion (OPE) for heavy-light-quark pseudoscalar mesons (D -mesons and B -mesons) in medium is determined, both for a moving meson with respect to the surrounding medium as well as for a meson at rest. First of all, the OPE is given in terms of normal-ordered operators up to mass dimension 5, and the mass of the heavy quark and the mass of the light quark are kept finite. The Wilson coefficients of such an expansion are infrared (IR) divergent in the limit of a vanishing light-quark mass. A consistent separation of scales necessitates an OPE in terms of non-normal-ordered operators, which implies operator mixing, where the IR-divergences are absorbed into the operators. It is shown that the Wilson coefficients of such an expansion are IR-stable, and the limit of a vanishing light-quark mass is perfomed. Details of the major steps for the calculation of the Wilson coefficients are presented. By a comparison with previous results obtained by other theoretical groups we have found serious disagreements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E598 Collaboration, Phys. Rev. Lett. 33, 1404 (1974).

    Article  Google Scholar 

  2. SLAC-SP-017 Collaboration, Phys. Rev. Lett. 33, 1406 (1974).

    Article  Google Scholar 

  3. Particle Data Group (K. Nakamura et al.), J. Phys. G 37, 075021 (2010).

    Article  ADS  Google Scholar 

  4. http://www.fair-center.de/.

  5. J. Schaffner-Bielich, I.N. Mishustin, J. Bondorf, Nucl. Phys. A 625, 325 (1997).

    Article  ADS  Google Scholar 

  6. NA50 Collaboration, Eur. Phys. J. C 39, 335 (2005).

    Article  ADS  Google Scholar 

  7. M.I. Gorenstein, A.P. Kostyuk, H. Stöcker, W. Greiner, J. Phys. G 27, L47 (2001).

    Article  ADS  Google Scholar 

  8. J.M. Campbell, E.W.N. Glover, C.J. Maxwell, Phys. Rev. Lett. 81, 1568 (1998).

    Article  ADS  Google Scholar 

  9. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979).

    Article  ADS  Google Scholar 

  10. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 448 (1979).

    Article  ADS  Google Scholar 

  11. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 519 (1979).

    Article  ADS  Google Scholar 

  12. A.I. Bochkarev, M.E. Shaposhnikov, Phys. Lett. B 145, 276 (1984).

    Article  ADS  Google Scholar 

  13. A.I. Bochkarev, M.E. Shaposhnikov, Nucl. Phys. B 268, 220 (1986).

    Article  ADS  Google Scholar 

  14. T. Hatsuda, Y. Koike, S.H. Lee, Nucl. Phys. B 394, 221 (1993).

    Article  ADS  Google Scholar 

  15. E.G. Drukarev, E.M. Levin, Prog. Part. Nucl. Phys. A 556, 467 (1991).

    Google Scholar 

  16. S. Zschocke, O.P. Pavlenko, B. Kämpfer, Eur. Phys. J. A 15, 529 (2002).

    Article  ADS  Google Scholar 

  17. K. Wilson, Phys. Rev. 179, 1499 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  18. C. Itzykson, J.-B. Zuber, Quantum Field Theory (McGraw Hill, 1980), (Dover, 2006).

  19. T. Muta, Foundations of Quantum Chromodynamics (World Scientific Publishing, 1997).

  20. P. Pascual, R. Tarrach, QCD: Renormalization for the Practitioner, Lect. Notes Phys., Vol. 194 (Springer, 1984).

  21. T.M. Aliev, V.L. Eletsky, Sov. J. Nucl. Phys. 38, 936 (1983) T.M. Aliev, V.L. Eletsky, Yad. Fiz. 38.

    Google Scholar 

  22. S. Narison, QCD Spectral Sum Rules, Lect. Notes Phys. Vol. 26 (World Scientific, 1981).

  23. L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rep. 127, 1 (1985).

    Article  ADS  Google Scholar 

  24. L.J. Reinders, S. Yazaki, R. Rubinstein, Phys. Lett. B 97, 257 (1980).

    Article  ADS  Google Scholar 

  25. L.J. Reinders, S. Yazaki, R. Rubinstein, Phys. Lett. B 103, 63 (1981).

    Article  ADS  Google Scholar 

  26. S.C. Generalis, D.J. Broadhurst, Phys. Lett. B 139, 85 (1984).

    Article  ADS  Google Scholar 

  27. D.J. Broadhurst, Phys. Lett. B 101, 423 (1981).

    Article  ADS  Google Scholar 

  28. S.C. Generalis, Ph.D. Thesis, Open University report No. OUT-4102-13 (1984).

  29. M. Jamin, M. Münz, Z. Phys. C 60, 569 (1993).

    Article  ADS  Google Scholar 

  30. K.G. Chetyrkin, C.A. Dominguez, D. Pirjol, K. Schilcher, Phys. Rev. D 51, 5090 (1995).

    Article  ADS  Google Scholar 

  31. A. Hayashigaki, Phys. Lett. B 487, 96 (2000).

    Article  ADS  Google Scholar 

  32. P. Morath, Schwere Quarks in dichter Materie, Ph.D. Thesis, Technische Universität München (2001).

  33. P. Morath, W. Weise, S.-H. Lee, in Lisbon 1999, QCD: Perturbative or nonperturbative? (World Scientific, 1999) p. 425.

  34. T. Hilger, R. Thomas, B. Kämpfer, Phys. Rev. C 79, 025202 (2009).

    Article  ADS  Google Scholar 

  35. T. Hilger, B. Kämpfer, arXiv:0904.3491 (2009) Proceedings of the 47th International Winter Meeting On Nuclear Physics, 26-30 Jan 2009, Bormio, Italy.

  36. R.E. Cutkosky, J. Math. Phys. 1, 429 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. A.K. Das, Finite Temperature Field Theory (World Scientific, Singapore, 1997).

  38. W.A. Bardeen, A.J. Buras, D.W. Duke, T. Muta, Phys. Rev. D 18, 3998 (1978).

    Article  ADS  Google Scholar 

  39. F.V. Tkachov, Phys. Lett. B 125, 85 (1983).

    Article  ADS  Google Scholar 

  40. S. Narison, QCD as a Theory of Hadrons: From Partons to Confinement, in Camb. Mon. Part. Phys., Nucl. Phys. Cosmol. Vol. 17 (Cambridge University Press, 2004).

  41. V.P. Spiridonov, K.G. Chetyrkin, Sov. J. Nucl. Phys. 47, 522 (1988).

    Google Scholar 

  42. S.C. Generalis, D.J. Broadhurst, Phys. Lett. B 165, 175 (1985).

    Article  ADS  Google Scholar 

  43. A.G. Grozin, Y.F. Pinelis, Z. Phys. C 33, 419 (1987).

    Article  ADS  Google Scholar 

  44. A.G. Grozin, Int. J. Mod. Phys. A 10, 3497 (1995).

    Article  ADS  Google Scholar 

  45. A.R. Zhitnitsky, Phys. Rev. D 55, 3006 (1997).

    Article  ADS  Google Scholar 

  46. I. Tamm, J. Phys. 9, 449 (1945).

    Google Scholar 

  47. S.M. Dancoff, Phys. Rev. 78, 382 (1950).

    Article  ADS  MATH  Google Scholar 

  48. M. Rosa-Clot, M. Testa, Nuovo Cimento A 78, 113 (1983).

    Article  ADS  Google Scholar 

  49. M. Rosa-Clot, M. Testa, Phys. Rev. C 23, 2730 (1981).

    Article  ADS  Google Scholar 

  50. H. Holtmann, A. Szczurek, J. Speth, Nucl. Phys. A 569, 631 (1996).

    Article  ADS  Google Scholar 

  51. K.G. Chetyrkin, F.V. Tkachov, S.G. Gorishnii, Phys. Lett. B 119, 407 (1982).

    Article  ADS  Google Scholar 

  52. F.V. Tkachov, Phys. Lett. B 124, 212 (1983).

    Article  ADS  Google Scholar 

  53. C.H. Llewellyn Smith, J.P. de Vries, Nucl. Phys. B 296, 991 (1988).

    Article  ADS  Google Scholar 

  54. S. Zschocke, B. Kämpfer, Open charm mesons in nuclear matter with QCD sum rule approach (2006), unpublished.

  55. T. Hilger, QCD sum rules for D mesons in nuclear matter, Diploma Thesis, Technische Universität Dresden (2008).

  56. T. Hilger, B. Kämpfer, S. Leupold, Phys. Rev. C 84, 045202 (2011).

    Article  ADS  Google Scholar 

  57. T. Hilger, R. Schulze, B. Kämpfer, J. Phys. G 37, 094054 (2010).

    Article  ADS  Google Scholar 

  58. T. Hilger, B. Kämpfer, Nucl. Phys. Proc. Suppl. 207, 277 (2010).

    Article  ADS  Google Scholar 

  59. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972).

    Google Scholar 

  60. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977).

    Article  ADS  Google Scholar 

  61. Yu.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).

    ADS  Google Scholar 

  62. V.A. Novikov, M.A. Shifman, A.I. Vainshtein, M.B. Voloshin, V.I. Zakharov, Proceedings of Neutrino 78, West Lafayette C 278 (1978).

  63. S. Narison, Phys. Lett. B 210, 238 (1988).

    Article  ADS  Google Scholar 

  64. A. Hayashigaki, K. Terasaki, arXiv:hep-ph/0411285 (2004).

  65. S. Narison, Phys. Lett. B 520, 115 (2001).

    Article  ADS  Google Scholar 

  66. S. Narison, Phys. Lett. B 605, 319 (2005).

    Article  ADS  Google Scholar 

  67. V.A. Novikov, M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Fortschr. Phys. 32, 585 (1984).

    Article  Google Scholar 

  68. V.A. Fock, Sov. Phys. 12, 404 (1937).

    Google Scholar 

  69. J. Schwinger, Phys. Rev. 82, 684 (1952).

    Google Scholar 

  70. C. Cronström, Phys. Lett. B 90, 267 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  71. E. Yehudai, HIP: Symbolic high-energy physics calculations using maple, FERMILAB-PUB-92-022-T (1992).

  72. E. Leader, E. Predazzi, An introduction to gauge theories and modern particle physics, in Camb. Mon. Part. Phys., Nucl. Phys. Cosmol., Vol. 4 (Cambridge University Press, 1996).

  73. X.M. Jin, T. D. Cohen, R.J. Furnstahl, D.K. Griegel, Phys. Rev. C 47, 2882 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Bijnens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zschocke, S., Hilger, T. & Kämpfer, B. In-medium operator product expansion for heavy-light-quark pseudoscalar mesons. Eur. Phys. J. A 47, 151 (2011). https://doi.org/10.1140/epja/i2011-11151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2011-11151-y

Keywords

Navigation