Skip to main content
Log in

Shifting the closed proton shell to Z = 122 —A possible scenario to understand the production of superheavy elements Z = 112−118

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The recent experiments at FLNR, Dubna, demonstrated that cross-sections to produce SHEs by 48Ca-induced reactions on actinide targets increase beyond Z = 111, reach a maximum of 5 pb at Z = 114 and fall below the 1 pb level at Z = 118. A scenario is proposed to understand the findings within the frame of former experimental results of heavy-element production and theoretical predictions about the stability of the nuclides concerned. New ingredients introduced are: 1) to shift the next proton shell beyond Pb from Z = 114 to Z = 122; 2) the isotopes of the elements Z = 112 to Z = 118 are deformed and their nuclei have oblate shapes; 3) the fission barriers around the next nucleus with doubly closed shells 184306 122 are larger than the neutron separation energies and reach values in the range of 10MeV. The ascent of the flat top at 184306 122 is described by the proposed scenario, which likewise excludes reaching the doubly closed shell region at the top by today’s experimental methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.T. Oganessian et al., Phys. Rev. Lett. 83, 3154 (1999).3154

    Article  Google Scholar 

  2. Y.T. Oganessian et al., J. Phys. G Nucl. Part. Phys. 34, R.165 (2007).

    Article  ADS  Google Scholar 

  3. R. Eichler et al., Nature 83, 487 (2007).

    Google Scholar 

  4. S. Hofmann et al., Eur. Phys. J. A 32, 251 (2007).

    Article  ADS  Google Scholar 

  5. Y.T. Oganessian, TAN07, Davos, unpublished (2007).

  6. P. Armbruster, Annu. Rev. Nucl. Part. Sci. 35, 135 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  7. P. Armbruster, Annu. Rev. Nucl. Part. Sci. 50, 411 (2000).

    Article  ADS  Google Scholar 

  8. H. Meldner, Ark. Fys. 36, 593 (1967).

    Google Scholar 

  9. A. Sobiczewski, F. Gareev, B.N. Kalinkin, Phys. Lett. 22, 500 (1966).

    Article  ADS  Google Scholar 

  10. M. Göppert-Mayer, H.D. Jensen, Elementary Theory of Nuclear Shell Structure (Wiley, New York, NY, 1955).

    MATH  Google Scholar 

  11. J.F. Berger et al., Nucl. Phys. A 685, 1c (2001).

    Article  ADS  Google Scholar 

  12. M. Bender et al., Phys. Lett. B 515, 42 (2001).

    Article  ADS  Google Scholar 

  13. G. Audi et al., Nucl. Phys. A 729 (2003).

  14. F. Jachello, Phys. Rev. Lett. 87, 052502 (2001).

    Article  ADS  Google Scholar 

  15. R. Casten, Eur. Phys. J. A 20, 167 (2004).

    Article  ADS  Google Scholar 

  16. M. Bernas et al., Phys. Lett. B 415, 111 (1997).

    Article  ADS  Google Scholar 

  17. J. Jolie et al., Phys. Rev. Lett. 87, 162501 (2000).

    Article  ADS  Google Scholar 

  18. J. Dvorak et al., Phys. Rev. Lett. 97, 242502 (2006).

    Article  ADS  Google Scholar 

  19. P. Reiter et al., Phys. Rev. Lett. 82, 809 (1999).

    Article  Google Scholar 

  20. M. Leino et al., Eur. Phys. J. A 6, 63 (1999).

    ADS  Google Scholar 

  21. P. Möller et al., At. Data Nucl. Data Tables 59, 185 (1995).

    Article  ADS  Google Scholar 

  22. A. Sobiczewski, Z. Patyk, S. Cwiok, Phys. Lett. B 186, 6 (1987).

    Article  ADS  Google Scholar 

  23. P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).

    Article  ADS  Google Scholar 

  24. C. Schmitt et al., Phys. Rev Lett. 99, 042701 (2007).

    Article  ADS  Google Scholar 

  25. K.H. Schmidt et al., Nucl. Phys. A 665, 221 (2000).

    Article  ADS  Google Scholar 

  26. K.H. Schmidt, W. Morawek, Rep. Progr. Phys. 54, 949 (1991).

    Article  ADS  Google Scholar 

  27. A.R. Junghans et al., Nucl. Phys. A 629, 635 (1998).

    Article  ADS  Google Scholar 

  28. A. Heinz et al., Nucl. Phys. A 713, 3 (2003).

    Article  ADS  Google Scholar 

  29. J.R. Nix, Annu. Rev. Nucl. Part. Sci. 22, 65 (1972).

    Article  ADS  Google Scholar 

  30. M. Bender, P.H. Heenen, P.G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

    Article  ADS  Google Scholar 

  31. R. Smolanczuk, Phys. Rev. C 56, 812 (1997).

    Article  ADS  Google Scholar 

  32. Y.T. Oganessian, A.S. Iljinov, A.G. Demin, S.P. Tretyakova, Nucl. Phys. A 239, 353 (1975).

    Article  ADS  Google Scholar 

  33. K. Morita et al., J. Phys. Soc. Jpn. 73, 2593 (2004).

    Article  ADS  Google Scholar 

  34. T. Sikkeland, Ark. Fys. 36, 539 (1967).

    Google Scholar 

  35. P. Armbruster et al., GSI-Jahresberichte 1976/77, GSIDarmstadt, J1-1977/78.

  36. K.E. Gregorich et al., LBNL-Report 63617 (2007).

  37. W. Swiatecki, K. Siwek-Wilczynska, J. Wilczynski, Phys. Rev. C 71, 014602 (2005).

    Article  ADS  Google Scholar 

  38. Y. Aritomo, M. Ohta, Nucl. Phys. A 764, 149 (2006).

    Article  ADS  Google Scholar 

  39. Y.T. Oganessian et al., Phys. Rev. C 70, 064609 (2004).

    Article  ADS  Google Scholar 

  40. A.V. Ignatyuk et al., Sov. J. Nucl. Phys. 21, 612 (1975).

    Google Scholar 

  41. Y.A. Lazarev et al., Phys. Rev. Lett. 75, 1903 (1995).

    Article  ADS  Google Scholar 

  42. S. Hofmann, private communication (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Armbruster.

Additional information

Communicated by T.S. Bíró

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armbruster, P. Shifting the closed proton shell to Z = 122 —A possible scenario to understand the production of superheavy elements Z = 112−118. Eur. Phys. J. A 37, 159–167 (2008). https://doi.org/10.1140/epja/i2008-10607-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2008-10607-5

PACS

Navigation