Skip to main content
Log in

Kalb–Ramond excitations in a thick-brane scenario with dilaton

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We compute the full spectrum and eigenstates of the Kalb–Ramond field in a warped non-compact Randall–Sundrum-type five-dimensional spacetime in which the ordinary four-dimensional braneworld is represented by a sine-Gordon soliton. This 3-brane solution is fully consistent with both the warped gravitational field and bulk dilaton configurations. In such a background we embed a bulk antisymmetric tensor field and obtain, after reduction, an infinite tower of normalizable Kaluza–Klein massive components along with a zero mode. The low lying mass eigenstates of the Kalb–Ramond field may be related to the axion pseudoscalar. This yields phenomenological implications on the space of parameters, particularly on the dilaton coupling constant. Both analytical and numerical results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. J. Polchinski, String Theory, vols. 1–2 (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  4. A. Kehagias, K. Tamvakis, Phys. Lett. B 504, 38 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. M.S. Cunha, H.R. Christiansen, Phys. Rev. D 84, 085002 (2011)

    Article  ADS  Google Scholar 

  6. Y.-X. Liu, H. Guo, C.-E. Fu, H.-T. Li, Phys. Rev. D 84, 044033 (2011)

    Article  ADS  Google Scholar 

  7. J.E. Thompson, R.R. Volkas, Phys. Rev. D 82, 116007 (2010)

    Article  ADS  Google Scholar 

  8. H.-T. Li, Y.-X. Liu, Z.-H. Zhao, H. Guo, Phys. Rev. D 83, 045006 (2011)

    Article  ADS  Google Scholar 

  9. A. Sen, An Introduction to nonperturbative string theory, in A Newton Institute Euroconference on Duality and Supersymmetric Theories, Cambridge, England, 7–18 Apr 1997, ed. by D.I. Olive, P.C. West. (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  10. M. Kalb, P. Ramond, Phys. Rev. D 9, 2273 (1974)

    Article  ADS  Google Scholar 

  11. S.J. Gates, M. Grisaru, M. Rocek, W. Siegel, Superspace (Benjamin, New York, 1983)

    MATH  Google Scholar 

  12. M. Green, J. Schwarz, E. Witten, Superstring Theory, vol. II (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  13. H.R. Christiansen, M.S. Cunha, M.K. Tahim, Phys. Rev. D 82, 085023 (2010)

    Article  ADS  Google Scholar 

  14. A.E. Chumbes, J.M. Hoff da Silva, M.B. Hott, arXiv:1108.3821

  15. Y.-X. Liu, C.-E. Fu, H. Guo, H.-T. Li, arXiv:1102.4500

  16. W.T. Cruz, M.O. Tahim, C.A. Almeida, Europhys. Lett. 88, 41001 (2009)

    Article  ADS  Google Scholar 

  17. A.R. Lugo, M.B. Sturla, Phys. Lett. B 637, 338 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  18. P. Majumdar, S. SenGupta, Class. Quantum Gravity 16, L89–L94 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. R. Puntigam, E. Schrufer, F. Hehl, Class. Quantum Gravity 14, 1347 (1997)

    Article  ADS  MATH  Google Scholar 

  20. F. Hehl, P. von der Heyde, G. Kerlick, J. Nester, Rev. Mod. Phys. 48, 393 (1976)

    Article  ADS  Google Scholar 

  21. S. SenGupta, A. Sinha, Phys. Lett. B 514, 109 (2001)

    Article  ADS  Google Scholar 

  22. A. Lue, L. Wang, M. Kamionkowski, Phys. Rev. Lett. 83, 1506 (1999)

    Article  ADS  Google Scholar 

  23. S. Kar, P. Majumdar, S. SenGupta, A. Sinha, Eur. Phys. J. C 23, 357–361 (2002)

    Article  ADS  MATH  Google Scholar 

  24. M. Bowick, S. Giddings, J.A. Harvey, G.T. Horowitz, A. Strominger, Phys. Rev. Lett. 61, 2823 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  25. E.J. Copeland, R. Easther, D. Wands, Phys. Rev. D 56, 874 (1997)

    Article  ADS  Google Scholar 

  26. D. Youm, Nucl. Phys. B 589, 315 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. D. Youm, Phys. Rev. D 64, 127501 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  28. M. Cvetic, S. Griffies, S. Rey, Nucl. Phys. B 381, 301 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  29. S. Das, A. Dey, S. SenGupta, Class. Quantum Gravity 23, L67 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. C. Csaki, J. Erlich, T.J. Hollowood, Y. Shirman, Nucl. Phys. B 581, 309 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. C. Csaki, J. Erlich, T.J. Hollowood, Phys. Rev. Lett. 84, 5932 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  32. K. Heun, Zur Theorie der Riemann’schen Functionen Zweiter Ordnung mit vier Verzweigungspunkten. Math. Ann. 33, 161–179 (1889). Available at http://www.digizeitschriften.de/main/dms/img/#navi

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Ronveaux (ed.), Heun’s Differential Equations (Oxford University Press, London, 1995)

    MATH  Google Scholar 

  34. M.N. Hounkonnou, A. Ronveaux, Appl. Math. Comput. 209, 421 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. E.S. Cleb-Terrab, J. Phys., Math. Gen. 37, 9923 (2004)

    Article  ADS  Google Scholar 

  36. P. P Fiziev, J. Phys. A, Math. Theor. 43, 035203 (2010)

    Article  ADS  Google Scholar 

  37. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Math. Series, vol. 55 (Nat. Bureau of Standards, Washington D.C., 1972)

    MATH  Google Scholar 

  38. J. Garriga, T. Tanaka, Phys. Rev. Lett. 84, 2778 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. S. Lamoreaux, Nature 441/4, 31 (2006)

    Article  ADS  Google Scholar 

  40. A.V. Derbin et al., Phys. Rev. D 83, 023505 (2011)

    Article  ADS  Google Scholar 

  41. ADMX—Axion Dark Matter experiment, http://www.phys.washington.edu/groups/admx/home.html

  42. CAST—CERN Axion Solar Telescope, http://cast.web.cern.ch/CAST/index.html

  43. CARRACK—Cosmic Axion Research using Rydberg Atoms in a resonant Cavity in Kyoto

  44. PVLAS—Polarizzazione del Vuoto con Laser, http://w3.ts.infn.it/experiments/pvlas/

  45. K. Zioutas et al., Phys. Rev. Lett. 94, 121301 (2005)

    Article  ADS  Google Scholar 

  46. E. Masso, J. Redondo, J. Cosmol. Astropart. Phys. 09, 015 (2005)

    Article  ADS  Google Scholar 

  47. O. Mena, S. Razzaque, F. Villaescusa Navarro, J. Cosmol. Astropart. Phys. 1102, 030 (2011)

    Article  ADS  Google Scholar 

  48. B. Nodland, J. Ralston, Phys. Rev. Lett. 78, 3043 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Christiansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christiansen, H.R., Cunha, M.S. Kalb–Ramond excitations in a thick-brane scenario with dilaton. Eur. Phys. J. C 72, 1942 (2012). https://doi.org/10.1140/epjc/s10052-012-1942-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1942-0

Keywords

Navigation