Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Hydrogen atom transfer rates from Tp-containing metal-hydrides to trityl radicals

Publication: Canadian Journal of Chemistry
20 October 2020

Abstract

The H• transfer rate constants for a series of group 6 molybdenum and tungsten pyrazolyl borate complexes are described. The rate constants for these complexes were found to span a range over 1 magnitude. Analysis of the H• transfer rate constants suggests that a combination of steric, electronic, and enthalpic factors are important in these reactions. Further analysis of the components suggests that the generated 17 e radicals of these complexes are less electrophilic than the more commonly used CpCr(CO)3H complexes. General implications for H• transfer reactions are discussed.

Résumé

Nous décrivons les constantes de vitesse du transfert de H• pour une série de complexes de pyrazolylborate avec des métaux du groupe 6 (le molybdène et le tungstène). Nous avons observé que les constantes de vitesse de ces complexes s’étendaient sur plus d’un ordre de grandeur. Selon l’analyse des constantes de vitesse du transfert de H•, une combinaison de facteurs stériques, électroniques et enthalpiques serait importante dans ces réactions. Une analyse plus approfondie des composants semble indiquer que les radicaux à 17 e générés à partir de ces complexes sont moins électrophiles que ceux des complexes CpCr(CO)3H, plus communément employés. Nous discutons des implications générales de ces résultats pour les réactions de transfert de H•.

Get full access to this article

View all available purchase options and get full access to this article.

References

(1)
Eisenberg D. C. and Norton J. R. Isr. J. Chem. 1991, 31, 55.
(2)
Crossley S. W., Obradors C., Martinez R. M., and Shenvi R. A. Chem. Rev. 2016, 116, 8912.
(3)
Gansäuer A., Otte M., Piestert F., and Fan C.-A. Tetrahedron. 2009, 65, 4984.
(4)
Yao C., Dahmen T., Gansauer A., and Norton J. Science. 2019, 364, 764.
(5)
Choi J., Tang L., and Norton J. R. J. Am. Chem. Soc. 2007, 129, 234.
(6)
Tang L., Papish E. T., Abramo G. P., Norton J. R., Baik M. H., Friesner R. A., and Rappe A. J. Am. Chem. Soc. 2003, 125, 10093.
(7)
Estes D. P., Norton J. R., Jockusch S., and Sattler W. J. Am. Chem. Soc. 2012, 134, 15512.
(8)
Hartung J., Pulling M. E., Smith D. M., Yang D. X., and Norton J. R. Tetrahedron. 2008, 64, 11822.
(9)
Kuo J. L., Hartung J., Han A., and Norton J. R. J. Am. Chem. Soc. 2015, 137, 1036.
(10)
Smith D. M., Pulling M. E., and Norton J. R. J. Am. Chem. Soc. 2007, 129, 770.
(11)
Bullock R. M. and Samsel E. G. J. Am. Chem. Soc. 1990, 112, 6886.
(12)
Pappas I. and Chirik P. J. J. Am. Chem. Soc. 2016, 138, 13379.
(13)
La Porte N. T., Moravec D. B., and Hopkins M. D. Proc. Natl. Acad. Sci. USA. 2014, 111, 9745.
(14)
Chambers G. M., Wiedner E. S., and Bullock R. M. Angew. Chem. Int. Ed. 2018, 57, 13523.
(15)
Ryan O. B., Tilset M., and Parker V. D. J. Am. Chem. Soc. 1990, 112, 2618.
(16)
Norton J. R., Spataru T., Camaioni D. M., Lee S.-J., Li G., Choi J., and Franz J. A. Organometallics. 2014, 33, 2496.
(17)
Capps K. B., Bauer A., Kiss G., and Hoff C. D. J. Organomet. Chem. 1999, 586, 23.
(18)
Yao Q., Bakac A., and Espenson J. H. Organometallics. 1993, 12, 2010.
(19)
Tilset M. and Parker V. D. J. Am. Chem. Soc. 1989, 111, 6711.
(20)
Jordan R. F. and Norton J. R. J. Am. Chem. Soc. 1982, 104, 1255.
(21)
Hoobler R. J., Hutton M. A., Dillard M. M., Castellani M. P., Rheingold A. L., Rieger A. L., Rieger P. H., Richards T. C., and Geiger W. E. Organometallics. 1993, 12, 116.
(22)
Skagestad V. and Tilset M. J. Am. Chem. Soc. 1993, 115, 5077.
(23)
Wise C. F., Agarwal R. G., and Mayer J. M. J. Am. Chem. Soc. 2020, 142, 10681.
(24)
Eisenberg D. C., Lawrie C. J. C., Moody A. E., and Norton J. R. J. Am. Chem. Soc. 1991, 113, 4888.
(25)
Trofimenko S. J. Am. Chem. Soc. 1969, 91, 588.
(26)
Curtis M. D., Shiu K. B., Butler W. M., and Huffman J. C. J. Am. Chem. Soc. 1986, 108, 3335.
(27)
Philipp C. C., White P. S., and Templeton J. L. Inorg. Chem. 1992, 31, 3825.
(28)
McLain S. J. J. Am. Chem. Soc. 1988, 110, 643.
(29)
Landrum J. T. and Hoff C. D. J. Organomet. Chem. 1985, 282, 215.
(30)
Woska D. C., Ni Y., and Wayland B. B. Inorg. Chem. 1999, 38, 4135.
(31)
Protasiewicz J. D. and Theopold K. H. J. Am. Chem. Soc. 1993, 115, 5559.
(32)
Gunasekara T., Abramo G. P., Hansen A., Neugebauer H., Bursch M., Grimme S., and Norton J. R. J. Am. Chem. Soc. 2019, 141, 1882.
(33)
Colle T. H., Glaspie P. S., and Lewis E. S. J. Org. Chem. 1978, 43, 2722.
(34)
Li G., Han A., Pulling M. E., Estes D. P., and Norton J. R. J. Am. Chem. Soc. 2012, 134, 14662.
(35)
Lankamp H., Nauta W. T., and MacLean C. Tetrahedron Lett. 1968, 9, 249.
(36)
Arnett E. M., Flowers R. A., Ludwig R. T., Meekhof A. E., and Walek S. A. J. Phys. Org. Chem. 1997, 10, 499.
(37)
Falivene L., Cao Z., Petta A., Serra L., Poater A., Oliva R., Scarano V., and Cavallo L. Nat. Chem. 2019, 11, 872.
(38)
Roberts B. P. Chem. Soc. Rev. 1999, 28, 25.
(39)
Domingo L. R. and Perez P. Org. Biomol. Chem. 2013, 11, 4350.
(40)
Goerigk L. and Grimme S. J. Chem. Theory Comput. 2011, 7, 291.
(41)
Grimme S., Antony J., Ehrlich S., and Krieg H. J. Chem. Phys. 2010, 132, 154104.
(42)
Grimme S., Ehrlich S., and Goerigk L. J. Comput. Chem. 2011, 32, 1456.
(43)
Axilrod B. M. and Teller E. J. Chem. Phys. 1943, 11, 299.
(44)
Muto Y. Proc. Phys. Soc. Jpn. 1944, 17, 629.
(45)
Zheng J., Xu X., and Truhlar D. G. Theor. Chem. Acc. 2011, 128, 295.
(46)
Brandenburg J. G., Bannwarth C., Hansen A., and Grimme S. J. Chem. Phys. 2018, 148, 064104.
(47)
Caldeweyher E., Bannwarth C., and Grimme S. J. Chem. Phys. 2017, 147, 034112.
(48)
Caldeweyher E., Ehlert S., Hansen A., Neugebauer H., Spicher S., Bannwarth C., and Grimme S. J. Chem. Phys. 2019, 150, 154122.

Supplementary Material

Supplementary data (cjc-2020-0392suppla.pdf)
Supplementary data (cjc-2020-0392supplb.xyz)

Information & Authors

Information

Published In

cover image Canadian Journal of Chemistry
Canadian Journal of Chemistry
Volume 99Number 2February 2021
Pages: 216 - 220

History

Received: 14 September 2020
Accepted: 9 October 2020
Accepted manuscript online: 20 October 2020
Version of record online: 20 October 2020

Permissions

Request permissions for this article.

Key Words

  1. hydrogen atom transfer
  2. metal hydride complex

Mots-clés

  1. transfert d’atome d’hydrogène
  2. complexe d’hydrure métallique

Authors

Affiliations

Hunter B. Vibbert
Department of Chemistry, Columbia University, New York, NY 10027, USA.
Hagen Neugebauer
Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, Bonn, D-53115, Germany.
Jack R. Norton [email protected]
Department of Chemistry, Columbia University, New York, NY 10027, USA.
Andreas Hansen [email protected]
Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, Bonn, D-53115, Germany.
Markus Bursch
Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, Bonn, D-53115, Germany.
Stefan Grimme
Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, Bonn, D-53115, Germany.

Notes

This paper is part of a special issue to honor Professor Robert H. Morris.
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. A Guide to Tris(4-Substituted)-triphenylmethyl Radicals
2. Nonheme Iron(III) Azide and Iron(III) Isothiocyanate Complexes: Radical Rebound Reactivity, Selectivity, and Catalysis
3. Best‐Practice DFT Protocols for Basic Molecular Computational Chemistry**
4. Best‐Practice DFT Protocols for Basic Molecular Computational Chemistry**
5. C–H oxidation in fluorenyl benzoates does not proceed through a stepwise pathway: revisiting asynchronous proton-coupled electron transfer

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Chemistry

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media