
A Numerical Study of Several Viscoelastic
Fluid Models

Corina Putinar

January 13, 2016

Abstract

Viscoelastic fluids are a type of fluid with a solvent and immersed
elastic filaments which create additional stresses on the fluid. The
Oldroyd-B equations are a well accepted model of the flow of vis-
coelastic fluids but in extensional flows, a characteristic of flows where
liquids approach or separate from each other, as the Wiessenberg num-
ber (Wi), a number that measures the relaxation time of the fluid,
approaches infinity the stress of the polymer also goes to infinity. For
small Wi, the polymer stress remains bounded but as Wi gets bigger
the polymer stress approaches a cusp shape until the solution eventu-
ally becomes unbounded. Modifications to the Oldroyd-B model have
been proposed that keep the solutions bounded, such as the Polymer
Diffusion, Giesekus Model, and Phan-Thien and Tanner model. Here
we study how well these modifications approximate the Oldroyd-B
model when the stress is very large. An ideal model for numerical
simulations would be close to the Oldroyd-B model outside of a small
region near the cusp or singularity but still be well-resolved near the
singularity. Analysis has been done to see how the proposed solutions
differ in regards to stress, time and other factors. When finding such
results it is desirable to use minimal computing resources when re-
solving these near singular solutions. Several different modifications
to the Oldroyd-B system with stress diffusion are investigated using
MATLAB and discussed to identify which modifications perform the
best in this flow geometry.
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1 Introduction

Complex fluids display a mixture of viscous and elastic behaviors. These flu-
ids are found in many industrial and natural settings. For example, bodily
fluids, such as blood and mucus, and household products, such as shampoo
and paint, under stress, can display complicated phenomena such as shear
thinning and normal stress differences. One important flow geometry that is
crucial to study is flow at extensional stagnation points. This flow situation
arises in many common flow settings such as flow around a cylinder. At a
stagnation point the velocity of the flow approaches zero, but large stresses
develop as the immersed polymer coils are stretched. Using computer sim-
ulations to model this flow situation is complicated due to underlying near-
singularities in the flow for the Oldroyd-B model, one of the simplest closed
continuum models of viscoelastic fluids.

Various modifications to the Oldroyd-B model have been proposed includ-
ing the PTT model [7] and the Giesekus model [2]. We compare these models
to the Oldroyd-B model as well as to a simple way of providing smoothing,
namely adding polymer stress diffusion [6, 8]. These three models are com-
pared to the Oldroyd-B model in the extensional flow geometry.

A pseudo-spectral method will be used to compute the solutions and
smoothness of the three models’ solutions will be compared to the Oldroyd-
B solution. In Sec. 1.1 we introduce the Oldroyd-B model and in Sec. 1.2 we
explain what is known about the Oldroyd-B model at extensional points and
demonstrate the need for changes to the model. In Sec. 2 we describe the
numerical method used in the simulations. Finally in Sec. 5 we introduce
the other models and demonstrate our results for these modifications.

1.1 Oldroyd-B Model

As mentioned before, the Oldroyd-B model describes the flow of a viscoelastic
fluid. For our simulations we are interested in an extensional background flow
and hence we write this model in non-dimensional form as:

∂tS + u · ∇S− (∇u · S + S · ∇u>) =
−1

Wi
(S− I) (1)

−∇p+4u = β∇ · S + f (2)

∇ · u = 0 (3)

f =

(
− sin(x) cos(y)
cos(x) sin(y)

)
, (4)
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where S is the polymer stress tensor, t is time, and u is the velocity of the
fluid. The background force f prescribes a 4−roll mill type geometry which
for Wi = 0 has the solution u = −1

2
f. The Wiessenberg number, Wi = τr

τf
,

where τr is the relaxation time of the polymer and τf is the time scale flow
of the fluid. The other non-dimensional parameters, β, is related to the fluid
viscosity. In particular, β ·Wi is the ratio of polymer to solvent viscosity,
which we fix β ·Wi = 0.5 in the following simulations [1, 5].

The Oldroyd-B equations and modifications are posed in a two dimen-
sional periodic domain where (x, y) ∈ [0, 2π)2, u(x, y) = (u1, u2) is the veloc-

ity and S =

(
S11 S12

S12 S22

)
is the symmetric polymer stress tensor.

The Oldroyd-B system is designed to model the flow of a dilute polymer
solution, where polymers are immersed in a Newtonian solvent. In the deriva-
tion of the Oldroyd-B model [1] a linear Hooke’s law is assumed for the force
due to extensions of polymer coils. To obtain a macroscopic equation for the
stress tensor these polymers are averaged over all possible configurations.
Hooke’s Law, given by

F = kX, (5)

where F is the force, k is a spring constant factor relating to the spring
stiffness, and X is distance, does not penalize infinite extension and this is
one of the difficulties with the model [5].

1.2 Behavior at extensional points

It is simplest to see the behavior of the Oldroyd-B model at extensional
points by assuming a linear background flow u = α(x,−y) [9]. Substituting
this in to Eq. (1) we see that the system decouples and one obtains a variable
coefficient, linear partial differential equation for each component of the stress
tensor. If we focus on S11 we get the following PDE:

∂tS11 + αx∂xS11 − αy∂yS11 − 2αS11 =
−1

Wi
(S11 − 1). (6)

Using the methods of characteristics there is a solution of form:

S11(x, y, t) =
1

1− 2ε
+ e(2ε−1)tH(xe−εt, yeεt), (7)

where ε = αWi [4], S11. In general the function H must be determined
by boundary conditions, however in simulations at extensional points we see
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that a unique behavior of the solution is along the direction of compression,
here in the y direction. Hence, we analyze the behavior of H in y.

A solution of the form

S11 =
1

1− 2ε
+ A|y|

1−2ε
ε , (8)

matched the simulations very well. This solution can be obtained from Eq.
(7) in the limit as t→∞ [9].

From Eq. 8 we can get three different types of solutions for the stress
depending on the value of ε.

1. For 1−2ε
ε

> 1 the stress will remain smooth and bounded.

2. For 0 < 1−2ε
ε

< 1 the stress will approach a cusp (the rate of approach
is unknown, though appears to be exponential in time).

3. For 1−2ε
ε

< 0 the stress will become divergent in time.

Substituting ε = αWi, we have the approximate regimes for Wi,:

1. 0 <Wi < 0.5 : The solution is at least differentiable.

2. 0.5 < Wi < 1 : The solution approaches a (bounded) cusp (not differ-
entiable).

3. Wi > 1 : The solution diverges in time (unbounded, not differentiable).

[9] These three regimes will be demonstrated in Sec. 3.

2 Spectral method

A pseudo-spectral method is used to simulate the Oldroyd-B model, the Fast
Fourier transform is taken of the Oldroyd-B equation allowing analysis of
numerical accuracy. Both the spectral method and Oldroyd-B model have
been calculated with N at multiple values: 64, 128, 256, 512, and 1024.
Given the cost of numerical implementation and accuracy of solutions, N at
512 is the most reasonable resolution to get accurate but not sparse data
since it would take a large quantity of time and computational power to get
enough data to analyze N at 1024.

MATLAB has been used with the following parameters to gather data
and simulations of the Oldroyd-B system given in Eqs. (1)–(4).

106



1. N
The variable N describes the frequency of the data, at a larger N there
is more data resulting in higher accuracy. For our Oldroyd-B simula-
tions, N has been taken and analyzed at the following values:

N Analysis of data
64 Too sparse for analysis
128 Too spare for analysis
256 Good value for representing data
512 Good value for representing data
1024 Good value but computational cost is high

2. Wi
The variable Wi, as previously described, affects the divergence of the
Oldroyd-B model. For our testing purposes, Wi has been used at 0.3,
0.7, and 3.0. Those values were chosen so that one can easily analyze
the behavior at a range of values, since the behavior of Wi at 0.7 mimics
that of Wi at 1.0. As we will see in the graphs later on, the Wi value
at 3.0 has data that tends towards∞ much faster than at the values of
0.3 or at 0.7. As seen through our graphs, the data when Wi is equal
to 0.3 does not numerically reach a high enough point on the y-axis to
get a fully accurate pattern of results. Therefore, we have found that
at Wi equal to 0.7 our results are able to be retrieved without a steep
increase to∞. These values were taken at time 5 and 7 so that enough
time has elapsed to properly estimate the behavior of Wi.

3 Simulations of Oldroyd-B behavior at ex-

tensional points

We show results from numerical simulations of the Oldroyd-B system given
in Eqs. (1)–(4) using MATLAB and the numerical algorithm outlined in Sec.
2. In each figure we graph S11(π, y, t) to demonstrate the different behavior
predicted by the analysis of the PDE from Eq. (6).

For Wi = 0.3 we should have a smooth bounded solution, and in Fig. 1
(a) we display the results with N = 256 at t = 5. For Wi = 0.7 we should
have a cusp solution, and in Fig. 1 (b) we display the results with N = 256,
at t = 5, which appears to be approaching a bounded, cusp. Finally, for
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Wi = 3.0 we should have a diverging solution, and in Fig. 1 (c) we display
the results with N = 256, at t = 5, and this solution appears to be diverging
in time. For other Wi values we have a solution that is not a clear bound,
cusp, or divergent solution. For example, Wi at 0.5 has a solution that is
closer to a cusp shape but still has bounded properties.

As we can see, the stress, S11(π, y, t), is dependent on Wi because it
changes rapidly and diverges when Wi is increasing.
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Figure 1: Plots of S11(π, y, t) for (a) Wi = 0.3 (b) Wi = 0.7 (c) Wi = 3.0.
This shows the frequency, k against the Fast Fourier Transform of S. The
range for k is different for each image so that one can see how the density

increases as N increases.

4 Spectra of Stress

Taking the Fourier Transform of the Oldroyd-B model gives us the amount of
frequency that stress, S. With graphs (a), (b), and (c) of Figure 2, a graph
of Ŝ, the Fourier Transform of S, has been configured. Ŝ can show us how
the frequency, N , impacts the Oldroyd-B model.

Figure 3 shows that as N , a number denoting the gridpoints, decreases
the graph becomes much more sparse, and thus approximated. Given these
parameters, N at 64 would be too sparse for our model but N at 256 is a
better idea of what needs to be analyzed.
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Figure 2: Plots of Ŝ11(π, k, t) for (a) N = 64 (b) N = 128 (c) N = 256 .

5 Modifications

5.1 New Equations

Recall, the Oldroyd-B equation:

∂tS + u · ∇S − (∇u · S + S · ∇u>) =
−1

Wi
(S − I) (9)

The Oldroyd-B equation can be sub-divided into multiple equations.
We can set the right hand side of the equation equal to a variable, R(S):

R(S) =
−1

Wi
(S − I) (10)

1. Polymer Diffusion The Polymer Diffusion is derived from equation (9)
by adding the wave vector and a delta of stress.

R(S) =
−1

wi
(S − I) + k4 S (11)

2. PTT
The Phan-Thien and Tanner model comes from transient model net-
work theory and assumes models can break and reform. [3].
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R(S) =
−1

wi
(S − I)− kStr(S) (12)

3. Giesekus
The Giesekus model is derived using a simple dumbbell model by re-
placing equation (9) with:

R(S) =
−1

wi
(S − I)− k(S)2 (13)
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Figure 3: Maximal Points of S when Polymer, PTT, and Giesekus Diffusions
are used with Wi = 0.70 and N = 256.

This image is zoomed to best display the maximal points of each graph.
This image uses the parameters of Wi at 0.70 and N at 256. It shows the
differences in stress when the Polymer Diffusion, PTT, and Giesekus
equations are used.

5.2 Numerical Results

These following simulations are the ‘best’ approximation to the Oldroyd-B
solution with ‘minimal’ computational resources and ‘maximal’ agreement.
We have compared three possible regularizations of the Oldroyd-B Model, as
mentioned in Section 5.1, The Polymer Diffusion, PTT Model, and Giesekus
Models, at the same level of k = 0.001 . With these comparisons, there are
two classes of solution types examined. 1) A cusp solution which is when Wi
is between 0.5 and 1. As we can see from Section 3 , the cusp is approached
exponentially in time. By analyzing our results, we can see that as t increases,
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the cusp is displaying properties that it would when t = ∞. Since we want
to minimize computational resources, the time t = 5 is enough to show the
cusp figure. 2) The divergent solution which occurs as Wi increases, to use
‘minimal’ computational resources we have found a Wi = 3.0 simulation to
be a good approximation of the divergent pattern. The following simulations
have been completed with Wi = 0.7 and Wi = 3.0 at time t = 5 and t = 7
with N = 256 and N = 1024 .
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(a) Stress, Wi=0.7, t=5, N=256
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(b) Velocity, Wi=0.7, t=5, N=256

0 50 100 150 200 250 300 350 400 450 500
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

k

σ̂
p 1
1(

0
,k

)

Stress at Wi = 0.7, t=5, N=1024 Stokes Oldroyd−B model

Student Version of MATLAB

(a) Stress, Wi=0.7, t=5, N=1024
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(b) Velocity, Wi=0.7, t=5, N=1024

In Figure 4a we can see that since the cusp grows exponentially in time,
we were able to find a time that portrayed the ‘cusp’ like shape within the
computational limits that we have. Figure 4b shows the velocity, U1(x, π/2),
following the same axes as Figure 4a. The images 5a and 5b show how our
simulation of the Stokes-Oldroyd-B model (N = 1024) is well resolved at a
degree of 10−14.
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(a) Stress, Wi=0.7, t=5, N=256
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(b) Velocity, Wi=0.7, t=5, N=256
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(a) Stress, Wi=0.7, t=5, N=256
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(b) Velocity, Wi=0.7, t=5, N=256

In Figure 6a we plot the relative difference of one component of the poly-
mer stress tensor between our ‘exact’ solution and the three models, Giesekus,
PTT, and Polymer Diffusion. We refer to the exact solution as SE11(x, y, t)
and the model as SM11 (x, y, t). The most singular behavior of our solution
is along the line of compression, i.e. (0, y) for −π ≤ y ≤ π, but due to
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symmetries in the problem we plot here

Relative difference =
|SE11(0, y, t)− SM11 (0, y, t)|

|SE11(0, y, 5)|
, for 0 ≤ y ≤ π/2 and t = 5.

The time t = 5 is chosen to compare with the ‘exact’ solution which was also
at t = 5. We notice that all three models capture the exact behavior of the
Stokes-Oldroyd-B solution to within ∼ 2 − 3 digits of accuracy. Note that
the x−axis is plotted on a logarithmic scale so the details of the solution
near the extensional point (x, y) = (0, 0) are displayed. We see that the
polymer diffusion model is the least accurate at the extensional point but
away from the extensional point all the models are quite similar. Figure 6b
shows the relative difference between the ‘exact’ solution and the 3 models
for the velocity along the line (x, y) = (π/4, y) for 0 ≤ y ≤ π/2.

Figure 7a shows the Fourier transform of the (1, 1) component of the poly-

mer stress along the line of compression for each of the 3 models, ŜM11 (0, k),
where k is the wave vector. We see that using N = 256 gives a solution
which is resolved to machine accuracy for the polymer diffusion model while
both the Giesekus and PTT model show decay in the wave number up to
10−6 at this time (t = 5). Results are similar for the Fourier transform of
the velocity, ûM(0, k), plotted in Fig. 7b but as the velocity is one order
smoother than the stress there is more decay in the modes for the Giesekus
and PTT models.
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(a) Stress, Wi=3.0, t=7, N=1024
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(b) Velocity, Wi=3.0, t=7, N=1024
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(a) Stress, Wi=3.0, t=7, N=1024
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(b) Velocity, Wi=3.0, t=7, N=1024

In figure 8a we plot the ‘divergent’ model, as stated in the Section 3
equations, for time t = 7. Figure 9a shows how the Fourier transform of

the stress, σ̂p11(x, π), decays until 10−10, where it is well resolved. Figure

11a shows the Fourier transform of the velocity, Û1(x, π/2), and how it is a
well-resolved simulation of Stokes-Oldroyd-B model (N = 1024).
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(a) Stress, Wi=3.0, t=7, N=256
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(b) Velocity, Wi=3.0, t=7, N=256
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(a) Stress, Wi=3.0, t=7, N=256
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(b) Velocity, Wi=3.0, t=7, N=256

These figures, like Figures 6a-7b, plot the relative difference between our
‘exact’ solution and three models mentioned before, Giesekus, PTT, and
Polymer Diffusion. Once again, we refer to the exact solution as τE11(x, y, t)
and the model as τM11 (x, y, t). In this case, our relative difference is taken at t
= 7 for 0 ≤ y ≤ π

2
. The time t = 7 is chosen here to compare with the ‘exact’
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solution since Wi was increased to 3.0. We can see that the new equations
capture the Stokes-Oldroyd-B solution between 1-2 digits of accuracy. The
polymer diffusion model is least accurate at the extensional point but regains
accuracy away from the extensional point. Figure 10b shows the relative
difference between the ‘exact’ solution and the three models along the line
(x, y) = (π/4, y) for 0 ≤ y ≤ π/2. Figure 11a shows the Fourier transform
of the (1, 1) component of the polymer stress along the line of compression
for each of the 3 models, τ̂M11 (0, k), where k is the wave vector. We see
that the PTT and Giesekus models show decay in the wave number for up to
(10−2), which is less than (10−6) which we saw for 6b. The polymer diffusion
model is still resolved to machine accuracy. Figure 11b shows the relative
difference between the ‘exact’ solution and the three models along the line
(x, y) = (π/4, y) for 0 ≤ y ≤ π/2.
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6 Conclusion

We saw that the Stokes-Oldroyd-B model has exponential-in-time singular-
ities which occur in extensional flows. For the values of Wiessenberg at
Wi = 0.3, Wi = 0.7, and Wi = 3.0, we’ve noticed that the Stokes-Oldroyd-
B will diverge, and lose a cusp-like shape and instead imitate a line shape, if
Wi is ≈ 3, 1−2αWi

αWi
< 0, will imitate a cusp if Wi is ≈ 0.7, 0 < 1−2αWi

αWi
< 1,

and will have a smooth and bounded result if Wi is ≈ 0.3, 1−2αWi
αWi

> 1.
Our goal was to compare the three modifications as described in 5.1, Poly-
mer Diffusion, PTT, and Giesekus, to the Stokes Oldroyd-B model to see
if they could match the behavior of the SOB model at lower resolutions.
Through our simulations, we found that all three modifications do a good
job approaching the Stokes-Oldroyd-B model in the short term, but at higher
values the PTT and Giesekus models suffer from the same problems as the
Stokes-Oldroyd-B model for longer times, such as a blow-up of data at a low
resolution. The Polymer Diffusion model, unlike the other models, can be
simulated at long times while keeping accuracy. This can also bee seen in
the figures 6a, 7a, and 11a.
Our study on Stokes-Oldroyd-B models and variations had limitations on the
computational time and resources we could use. Therefore, we had to derive
an analysis from lower resolutions which led to approximative results rather
than more refined results at a higher Wi and N .
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