Skip to main content
Log in

Involvement of neurogenomic regulation in maintenance of temperature homeostasis in the cold

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

We present data from several studies that indicate the important role of the genome in the regulation of temperature homeostasis. Long-term adaptation to cold causes specific changes in the expression of genes for thermosensitive TRP ion channels (TRPV3) and serotonin receptors (5HT-2A) in the hypothalamus. These changes are specific for the hypothalamus, the center of thermoregulation, and they are not observed in other parts of the brain. This may indicate that adaptive changes in the thermal sensitivity of hypothalamic neurons involve at least two adaptive genomic mechanisms, which regulate the ratio between thermosensitive TRP ion channels and mediator receptors located in a neuron. These two mechanisms can complement each other. With regard to the important role of ion channel TRPM8 in the formation of colddefense thermoregulatory, metabolic, and immune responses, it is reasonable to assume that variations in the functioning of the ion channel lead to the formation of diverse individual defense responses to environmental changes. Studies on humans provide evidence for the role of the rs11562975 single nucleotide polymorphism in the TRPM8 gene in the variability of temperature perception and, consequently, in the development of the cold defense response. Individuals with the heterozygous GC genotype are more sensitive to the cold and less sensitive to menthol (agonist of the TRPM8 ion channel) as compared to people with the homozygous GG genotype. In addition, this polymorphism results in a less energy-consuming hypometabolic response to cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes, N.M. and Sharp, T., A review of central 5-HT receptors and their function, Neuropharmacology, 1999, vol. 38, no. 8, pp. 1083–1152.

    Article  CAS  PubMed  Google Scholar 

  • Bautista, D.M., Siemens, J., and Glazer, J.M., The menthol receptor trpm8 is the principal detector of environmental cold, Nature, 2007, vol. 448, pp. 204–208.

    Article  CAS  PubMed  Google Scholar 

  • Blessing, W.W. and Seaman, B., 5-hydroxytryptamine(2A) receptors regulate sympathetic nerves constricting the cutaneous vascular bed in rabbits and rats, Neuroscience, 2003, vol. 117, no. 4, pp. 939–948.

    Article  CAS  PubMed  Google Scholar 

  • Bligh, J. and Cottle, W.H., The influence of ambient temperature on thermoregulatory responses to intraventricularly injected monoamines in sheep, goats and rabbits, Experientia, 1969, vol. 25, no. 6, pp. 608–609.

    Article  CAS  PubMed  Google Scholar 

  • Boulant, J.A., Hypothalamic neurons. Mechanisms of sensitivity to temperature, Ann. N.Y. Acad. Sci., 1998, vol. 856, pp. 108–115.

    Article  CAS  PubMed  Google Scholar 

  • Bruck, K. and Zeisberger, E., Adaptive changes in thermoregulation and their neuropharmacological basis, Pharmacol. Therapeut., 1987, vol. 35, nos. 1/2, pp. 163–215.

    Article  CAS  Google Scholar 

  • Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.J., Trafton, J., Petersen-Zeitz, K.R., Koltzenburg, M., Basbaum, A.I., and Julius, D., Impaired nociception and pain sensation in mice lacking the capsaicin receptor, Science, 2000, vol. 288, no. 5464, pp. 306–313.

    Article  CAS  PubMed  Google Scholar 

  • Caterina, M.J., Transient receptor potential ion channels as participants in thermosensation and thermoregulation, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, vol. 292, no. 1, pp. R64–R76.

    Article  CAS  PubMed  Google Scholar 

  • Garami, A., Pakai, E., Oliveira, D.L., Steiner, A.A., Wanner, S.P., Almeida, M.C., Lesnikov, V.A., Gavva, N.R., and Romanovsky, A.A., Thermoregulatory phenotype of the trpv1 knockout mouse: thermoeffector dysbalance with hyperkinesis, J. Neurosci., 2011, vol. 31, no. 5, pp. 1721–1733.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gavva, N.R., Bannona, W., Hovland, D.N., Lehto, S.G., Klionsky, L, Surapaneni, S., Immke, D.C., Henley, C., Arik, L., Bak, A., Davis, J., Ernst, N., Hever, G., Kuang, R., Shi, L., Tamir, R., Wang, J., Wang, W., Zajic, G., Zhu, D., Norman, M.H., Louis, J.C., Magal, E., and Treanor, J.J., Repeated administration of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade, J. Pharmacol. Exp. Ther., 2007, vol. 323, no. 1, pp. 128–137.

    Article  CAS  PubMed  Google Scholar 

  • Hemingway, A. and Birzis, L., Effect of hypoxia on shivering, J. Appl. Physiol., 1956, vol. 8, no. 6, pp. 577–579.

    CAS  PubMed  Google Scholar 

  • Hensel, H., Thermoreceptors, Annu. Rev. Physiol., 1974, vol. 36, pp. 233–249.

    Article  CAS  PubMed  Google Scholar 

  • Hori, T. and Nakayama, T., Effects of biogenic amines on central thermoresponsive neurones in the rabbit, J. Physiol., 1973, vol. 232, no. 1, pp. 71–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jordt, S.E., McKemy, D.D., and Julius, D., Lessons from peppers and peppermint: the molecular logic of thermosensation, Curr. Opin. Neurobiol., 2003, vol. 13, no. 4, pp. 487–492.

    Article  CAS  PubMed  Google Scholar 

  • Kozyreva, T.V., Neurophysiological aspects of the longterm adaptation to cold in mammals: the role of central and peripheral thermoreceptors, J. Thermal Biology, 2006, vol. 31, pp. 105–114.

    Article  CAS  Google Scholar 

  • Kozyreva, T.V., Participation of cold sensitive trpm8 ion channel in modulation of metabolism and immune response, Frontiers Immunol., 2013. doi:10.3389/conf. fimmu.2013.02.00951

    Google Scholar 

  • Kozyreva, T.V. and Eliseeva, L.S., Immune response in cold exposures of different types, J. Thermal. Biol., 2000, vol. 25, pp. 401–404.

    Article  Google Scholar 

  • Kozyreva, T.V. and Pierau, Fr.-K., Effect of cold adaptation and noradrenaline on thermosensitivity of rat hypothalamic neuron studied in vitro, Neurophysiology, 1994, vol. 26, no. 3, pp. 142–146.

    Article  Google Scholar 

  • Kozyreva, T.V. and Tkachenko, E.Ia., Effect of menthol on human temperature sensitivity, Fiziol. Cheloveka, 2008, vol. 34, no. 2, pp. 99–103.

    CAS  PubMed  Google Scholar 

  • Kozyreva, T.V., Tkachenko, E.Ya., Kozaruk, V.P., Latysheva, T.V., and Gilinsky, M.A., Effects of slow and rapid cooling on catecholamine concentration in arterial plasma and the skin, Am. J. Physiol. Regul. Integr, 1999, vol. 45, pp. R1668–R1672.

    Google Scholar 

  • Kozyreva, T.V., Eliseeva, L.S., and Vavilin, V.A., Effect of cooling rate and depth on the immune response and corticosterone blood level in rats, Ross. Fiziol. Zh. Im. I.M. Sechenova, 2000, vol. 86, no. 12, pp. 1618–1623.

    CAS  PubMed  Google Scholar 

  • Kozyreva, T.V., Kozaruk, V.P., Tkachenko, E.Ia., and Khramova, G.M., Agonist of trpm8 channel, mentol, facilitates the initiation of thermoregulatory responses to external cooling, J. Thermal Biol., 2010, vol. 35, pp. 428–434.

    Article  CAS  Google Scholar 

  • Kozyreva, T.V., Tkachenko, E.Ia., Potapova, T.A., Romashchenko, A.G., and Voevoda, M.I., Association of single nucleotide polymorphism rs11562975 in the thermosensitive ion channel TRPM8 gene with human sensitivity to cold and menthol, Fiziol. Cheloveka, 2011, vol. 37, no. 2, pp. 71–76.

    CAS  PubMed  Google Scholar 

  • Kozyreva, T.V., Khramova, G.M., and Eliseeva, L.S., The influence of trpm8 ion channel activation on immune response at different temperature conditions, J. Thermal Biol., 2012, vol. 37, pp. 648–653.

    Article  CAS  Google Scholar 

  • Kozyreva, T.V., Tkachenko, E.Ia., Potapova, T.A., and Voevoda, M.I., Respiratory system response to cooling in subjects with single nucleotide polymorphism rs11562975 in the gene for thermosensitive TRPM8 ion channel, Fiziol. Cheloveka, 2014, vol. 40, no. 2, pp. 94–98.

    CAS  PubMed  Google Scholar 

  • Lee, H., Iida, T., Mizuno, A., Suzuki, M., and Caterina, M.J., Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4, J. Neurosci., 2005, vol. 25, no. 5, pp. 1304–1310.

    Article  CAS  PubMed  Google Scholar 

  • Lin, M.T., Tsay, H.J., Su, W.H., and Chueh, F.Y., Changes in extracellular serotonin in rat hypothalamus affect thermoregulatory function, Am. J. Physiol., 1998, vol. 274, no. 5, pp. R1260–1267.

    CAS  PubMed  Google Scholar 

  • McKemy, D.D., How cold is it? TRPM8 and TRPA1 in the molecular logic of cold, Mol. Pain, 2005, vol. 1, no. 1, pp. 16–22.

    Article  PubMed Central  PubMed  Google Scholar 

  • McKemy, D.D., Neuhausser, W.M., and Julius, D., Identification of a cold receptor reveals a general role for TRP channels in thermosensation, Nature, 2002, vol. 416, no. 6876, pp. 52–58.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama, T., Eisenman, J.S., and Hardy, J.D., Single unit activity of anterior hypothalamus during local heating, Science, 1961, vol. 134, no. 3478, pp. 560–561.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas, A.C. and Seiden, L.S., Ambient temperature influences core body temperature response in rat lines bred for differences insensitivity to 8-hydroxy-dipropylaminotetralin, J. Pharmacol. Exp. Ther., 2003, vol. 305, no. 1, pp. 368–374.

    Article  CAS  PubMed  Google Scholar 

  • Oerther, S., Temperature set-point changes induced by DA D2/3 and 5-HT1A receptor agonists in the rat, Neuroreport, 2000, vol. 11, no. 18, pp. 3949–3951.

    Article  CAS  PubMed  Google Scholar 

  • Patapoutian, A., Peier, A.M., Story, G.M., and Viswanath, V., ThermoTRP channels and beyond: mechanisms of temperature sensation, Neuroscience, 2003, vol. 4, no. 7, pp. 529–539.

    CAS  PubMed  Google Scholar 

  • Popova, N.K. and Konusova, A.V., Brain and peripheral effects of serotonin on thermoregulation, Biog. Amines, 1985, vol. 3, no. 2, pp. 125–134.

    CAS  Google Scholar 

  • Potapova, T.A., Yudin, N.S., Babenko, V.N., Pilipenko, I.V., and Kobsev, V.F., Gyrgol’kau la., voevoda mi. polymorphism for the cold receptor gene trpm8 in ethnic groups of Siberia and the far east, Inform. Vestnik VOGiS, vol. 12, no. 4, pp. 749–754.

  • Ramsey, I.S., Delling, M., and Clapham, D.E., An introduction to trp channels, Annu. Rev. Physiol., 2006, vol. 68, pp. 619–647.

    Article  CAS  PubMed  Google Scholar 

  • Simonova, T.G., Heat and moisture exchange in the respiratory pathways, Fiziologiya dykhaniya (Physiology of Breath), St. Petersburg, 1994, pp. 139–158.

    Google Scholar 

  • Slonim, A.D., Uchenie o fiziologicheskikh adaptatsiyakh. Ekologicheskaya fiziologiya zhivotnykh (Doctrine of Physiological Adaptations. Ecological Physiology of Animals), Leningrad: Nauka, 1979, pp. 79–182.

    Google Scholar 

  • Tajino, K., Matsumura, K., Kosada, K., Shibakusa, T., Inoue, K., Fushiki, T., Hosokawa, H., and Kobayashi, S., Application of menthol to the skin of whole trunk in mice induces autonomic and behavioral heat-gain responses, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, vol. 293, no. 5, pp. R2128–R2135.

    Article  CAS  PubMed  Google Scholar 

  • Vay, L., Gu, Ch., and McNaughton, P.A., The thermo-TRP ion channel family: properties and therapeutic implications, Br. J. Pharmacol., 2012, vol. 165, no. 4, pp. 787–801.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Voronova, I.P., Kulikov, A.V., Popova, N.K., and Kozyreva, T.V., Effect of long-term cold adaptation on the expression of mRNA for serotonin 5-HT1A and5-HT2A receptors, Ross. Fiziol. Zh. Im. I.M. Sechenova, 2006, vol. 92, no. 5, pp. 599–606.

    CAS  PubMed  Google Scholar 

  • Voronova, I.P., Kulikov, A.V., Popova, N.K., and Kozyreva, T.V., Expression of the 1A and 2A serotonin receptor genes in the brain of rats adapted to warm and cold, J. Thermal Biol, 2007, vol. 32, pp. 188–192.

    Article  CAS  Google Scholar 

  • Voronova, I.P., Tuzhikova, A.A., and Kozyreva, T.V., Thermosensitive trp channel gene expression in the hypothalami of normal rats and rats adapted to cold, Ross Fiziol. Zh. Im I.M. Sechenova, 2012, vol. 98, no. 9, pp. 1101–1110.

    CAS  PubMed  Google Scholar 

  • Voronova, I.P., Tuzhikova, A.A., and Kozyreva, T.V., Gene expression of thermosensitive TRP ion channels in the rat brain structures: effect of adaptation to cold, J. Thermal. Biol., 2013, vol. 38, pp. 300–304.

    Article  CAS  Google Scholar 

  • Watanabe, T., Morimoto, A., and Murakami, N., Effect of amine on temperature-responsive neurons in slice preparation of rat brain stem, Am. J. Physiol., 1986, vol. 250, no. 4, pp. R553–R559.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Kozyreva.

Additional information

Original Russian Text © T.V. Kozyreva, I.P. Voronova, 2014, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2014, Vol. 18, No. 4/3, pp. 1100–1109.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozyreva, T.V., Voronova, I.P. Involvement of neurogenomic regulation in maintenance of temperature homeostasis in the cold. Russ J Genet Appl Res 5, 569–576 (2015). https://doi.org/10.1134/S2079059715060039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059715060039

Keywords

Navigation