Skip to main content
Log in

Genes determining the coloration of different organs in wheat

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

The coloration of several wheat organs has an adaptive significance. Coloration characteristics are widely used in taxonomy and for certification of wheat varieties; they are also a convenient model for genetic and molecular genetic studies. Data on chromosomal localization, genetic mapping, and structural and functional organization of all known genes that determine coloration in wheat are presented in this review. To date, localization of approximately 30 wheat genes that determine the coloration of different organs have been described. These genes are mainly presented by homoeologous loci in the A, B, and D genomes; most of them are located in gene-rich 1S0.8 and 7S0.4 regions of the wheat genome. Comparative mapping in different species of cereals indicates that the orthologous genes that control coloration can both be found in individual members (a homeologous series of the Rg genes was found only in wheat and aegilops; the R genes, in wheat, aegilops, and rye) and be widely presented in the whole family of cereals (genes, which determine anthocyanins coloration). Data on comparative mapping in combination with the results of the latest studies aimed at cloning and study of the functions of genes that determine the coloration of wheat organs give reason to believe that these genes belong to the Myb- and Myc-like gene families; these genes encode transcriptional activators of the structural genes of the flavonoid pigment biosynthesis in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhikari, T.B., Cavaletto, J., Dubcovsky, J., et al., Molecular Mapping of the Stb4 Gene for Resistance to Septoria tritici Blotch in Wheat, Phytopathology, 2004, vol. 94, pp. 1198–1206.

    Article  PubMed  CAS  Google Scholar 

  • Ahn, S. and Tanksley, S.D., Comparative Linkage Maps of the Rice and Maize Genomes, Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, pp. 7980–7984.

    Article  PubMed  CAS  Google Scholar 

  • Aliev, E.B. and Musaev, A.D., Identification of the Rg1 Gene Controlling Spike Color in the Spring Common Wheat Variety “Diamant 2”, Izv. Sib. Otd. Akad. Nauk SSSR, 1981, no. 10, pp. 87–92.

  • Allan, R.E. and Vogel, O.A., Monosomic Analysis of Red Seed Color in Wheat, Crop Sci., 1965, vol. 5, pp. 474–475.

    Article  Google Scholar 

  • Arbuzova, V.S., Maystrenko, O.I., and Popova, O.M., Development of Near-Isogenic Lines of the Common Wheat Cultivar “Saratovskaya 29”, Cereal Res. Commun., 1998, vol. 26, pp. 39–46.

    Google Scholar 

  • Arraiano, L.S., Worland, A.J., Ellerbrook, C., and Brown, J.K.M., Chromosomal Location of a Gene for Resistance to Septoria tritici Blotch (Mycosphaerella graminicola) in the Hexaploid Wheat “Synthetic 6x”, Theor. Appl. Genet., 2001, vol. 103, pp. 758–764.

    Article  CAS  Google Scholar 

  • Arzani, A., Peng, J.H., and Lapitan, N.L.V., DNA and Morphological Markers for a Russian Wheat Aphid Resistance Gene, Euphytica, 2004, vol. 139, pp. 167–172.

    Article  CAS  Google Scholar 

  • Ausemus, E.R., Harrington, Y.B., Worzella, W.S., and Reitz, R.L., A Summary of Genetic Studies in Hexaploid and Tetraploid Wheats, J. Am. Soc. Agron., 1946, vol. 38, pp. 1082–1099.

    Google Scholar 

  • Biffen, R.H., Mendel’s Law of Inheritance and Wheat Breeding, J. Agr. Sci., 1905, vol. 1, p. 48.

    Google Scholar 

  • Blanco, A., Bellomo, M.P., Cenci, A., et al., A Genetic Linkage Map of Durum Wheat, Theor. Appl. Genet., 1998, vol. 97, pp. 721–728.

    Article  CAS  Google Scholar 

  • Blanco, A., Pasqualone, A., Troccoli, A., et al., Detection of Grain Protein Content QTLs across Environments in Tetraploid Wheats, Plant. Mol. Biol., 2002, vol. 48, pp. 615–623.

    Article  PubMed  CAS  Google Scholar 

  • Bogdanova, E.D., Sarbaev, A.T., and Makhmudova, K.Kh., Wheat Resistance to Smut, in Mater. Nauch. Genet. Konf., Moskva, 26–27 fevralya 2002 (Proc. Sci. Conf. in Genetics, Moscow, February 26–27, 2002), Moscow, 2002, pp. 43–44.

  • Bolton, F.E., Inheritance of Blue Aleurone and Purple Pericarp in Hexaploid Wheat, Plant Breed. Abstr., 1970, vol. 40, p. 2684.

    Google Scholar 

  • Börner, A., Schumann, E., Fste, A., et al., Mapping of Quantitative Trait Loci Determining Agronomic Important Characters in Hexaploid Wheat (Triticum aestivum L.), Theor. Appl. Genet., 2002, vol. 105, pp. 921–936.

    Article  PubMed  Google Scholar 

  • Burnham, C.R., Discussions in Cytogenetics, Minneapolis: Burgess Publ. Co., 1962.

    Google Scholar 

  • Chao, S., Sharp, P.J., Worland, A.J., et al., RFLP-Based Genetic Maps of Wheat Homoeologous Group 7 Chromosomes, Theor. Appl. Genet., 1989, vol. 78, pp. 495–504.

    Article  CAS  Google Scholar 

  • Chin, K.-C., Le Pigment Pourpre dans le Hybrides de Bles Europeens, Africains et Canadiens, Acad. Sci., Paris, 1944a, vol. 219, pp. 78–80.

    Google Scholar 

  • Chin, K.-C., Relations Phylogenetiques Entre Tr. vulgare et le Tr. monococcum d’Apres le Pigment Pourpre, C. R. Acad. Sci., Ser. 3, 1944b, vol. 218, p. 975.

    Google Scholar 

  • Churchward, J.G., Studies on Physiologic Specialization of the Organisms Causing Bunt in Wheat, and the Genetic Resistance to This and Certain Others Wheat Diseases. Part II. Genetical Studies, Roy. Soc. N. S. Wales J., 1938, vol. 71, pp. 547–590.

    Google Scholar 

  • Clark, J.A., Segregation and Correlated Inheritance in Crosses between Kota and Hard Federation Wheats for Rust and Drought Resistance, J. Agric. Res., 1924, vol. 29, p. 1047.

    Google Scholar 

  • Cone, K.C., Cocciolone, S.M., Burr, F.A., and Burr, B., Maize Anthocyanin Regulatory Gene Pl Is a Duplicate of C1 That Functions in the Plant, Plant Cell, 1993, vol. 5, pp. 1795–1805.

    PubMed  CAS  Google Scholar 

  • Darwin, C., The Variation of Animals and Plants Uunder Domestication, New York: D. Appelton and Co., 1883.

    Google Scholar 

  • Davis, G.L., McMullen, M.D., Baysdorfer, C., et al., A Maize Map Standard with Sequenced Core Markers, Grass Genome Reference Points and 932 Expressed Sequence Tagged Sites (ESTs) in a 1736-Locus Map, Genetics, 1999, vol. 152, pp. 1137–72.

    PubMed  CAS  Google Scholar 

  • Devos, K.M., Atkinson, M.D., Chinoy, C.N., et al., Chromosomal Rearrangements in the Rye Genome Relative to That of Wheat, Theor. Appl. Genet., 1993, vol. 85, pp. 673–680.

    Article  CAS  Google Scholar 

  • Devos, K.M., Chap, S., Li, Q.Y., et al., Relationship Between Chromosome 9 of Maize and Wheat Homoeologous Group 7 Chromosomes, Genetics, 1994, vol. 138, pp. 1287–1292.

    PubMed  CAS  Google Scholar 

  • van Deynze, A.E., Dubovsky, J., Gill, K.S., et al., Molecular-Genetic Maps for Group 1 Chromosomes of Triticeae Species and Their Relation To Chromosomes in Rice and Oat, Genome, 1995, vol. 38, pp. 45–59.

    Article  PubMed  CAS  Google Scholar 

  • Dobrovolskaya, O.B., Arbuzova, V.S., Lohwasser, U., et al., Microsatellite Mapping of Complementary Genes for Purple Grain Colour in Bread Wheat (Triticum aestivum L.), Euphytica, 2006, vol. 150, pp. 355–364.

    Article  CAS  Google Scholar 

  • Dooner, H.K. and Kermicle, J.L., Displaced and Tandem Duplications in the Long Arm of Chromosome 10 in Maize, Genetics, 1976, vol. 82, pp. 309–322.

    PubMed  CAS  Google Scholar 

  • Dubcovsky, J., Luo, M.C., Zhong, G.Y., et al., Genetic Map of Diploid Wheat, Triticum monococcum L., and Its Comparison with Maps of Hordeum vulgare L., Genetics, 1996, vol. 143, pp. 983–999.

    PubMed  CAS  Google Scholar 

  • Efremova, T.T., Maystrenko, O.I., Arbuzova, V.S., and Laikova, L.I., Genetic Analysis of Glume Colour in Common Wheat Cultivars from the Former USSR, Euphytica, 1998, vol. 102, pp. 211–218.

    Article  Google Scholar 

  • Ellerbrook, C. and Worland, A.J., Using Precise Genetic Stocks to Study the Genetics of Disease Resistance in Wheat, EWAC Newslett., 2001, vol. 11, pp. 31–37.

    Google Scholar 

  • Elokhina, L.P., Genetic Control of Ear Color of the Spring Common Wheat “Milturum 553”, in Rol’ nauki v intensifikatsii sel’skogo khozyaistva: Sb. Tr. Konf., Ch. 1, Omsk, 20–21 aprelya 1989 (The Role of Science in Agricultural Intensification: Proc. Conf., Part 1, Omsk, April 20–21, 1989), Novosibirsk, 1990, pp. 13–14.

  • Engledow, F.L., A Case of Repulsion in Wheat, Cambridge: Phil. Soc. Proc, 1914, vol. 17, pp. 433–435.

    Google Scholar 

  • Erayman, M., Sandhu, D., Sidhu, D., et al., Demarcating the Gene-Rich Regions of the Wheat Genome, Nucleic Acids Res., 2004, vol. 32, pp. 3546–3565.

    Article  PubMed  CAS  Google Scholar 

  • Filipchenko, Yu.A., Genetika myagkikh pshenits (Common Wheat Genetics), Moscow: Sel’khozgiz, 1934.

    Google Scholar 

  • Fletcher, R.J. and McIntosh, R.A., Isolation and Identification of the Chromosome Arm Bearing Rg Determining Glume Color in Federation Wheat, EWAC Newslett, 1974, vol. 4, pp. 65–66.

    Google Scholar 

  • Flintham, J.E. and Gale, M.D., Dormancy Gene Maps in Homoeologous Cereal Genomes, in Proc. 7th Int. Symp. on Pre-Harvest Sprouting in Cereals, Japan, Osaka, 1995, pp. 143–149.

  • Freed, R.D., Everson, E.H., Ringlund, K., and Gullord, M., Seed Coat Color in Wheat and the Relationship to Seed Dormancy at Maturity, Cereal Res. Commun., 1976, vol. 4, pp. 147–149.

    Google Scholar 

  • Friebe, B., Tuleen, N., Jiadg, J., and Gill, B.S., Standard Karyotype of Triticum longissimum and Relationship with T. aestivum, Genome, 1993, vol. 36, pp. 731–742.

    Article  PubMed  CAS  Google Scholar 

  • Friebe, B., Tuleen, N.A., and Gill, B.S., Standard Karyotype of Triricum searsii and Its Relationship with Other S-Genome Species and Common Wheat, Theor. Appl. Genet., 1995, vol. 91, pp. 248–254.

    Article  Google Scholar 

  • Friebe, B., Qi, L.L., Nasuda, S., et al., Development of a Complete Set of Triticum aestivum-Aegilops speltoides Chromosome Addition Lines, Theor. Appl. Genet., 2000, vol. 101, pp. 51–58.

    Article  Google Scholar 

  • Gale, M.D. and Flavell, R.B., The Genetic Control of Anthocyanin Biosynthesis by Homoeologous Chromosomes in Wheat, Genet. Res., 1971, vol. 18, pp. 237–244.

    Article  Google Scholar 

  • Gale, M.D., Atkinson, M.D., Chinoy, C.N., et al., Genetic Maps of Hexaploid Wheat, in Proc. 8th Int. Wheat Genet. Symp., Li, Z.S. and Xin, Z.Y., Eds., Beijing: China Agricultural Scientech Press, 1995, pp. 1333–1500.

    Google Scholar 

  • Ganal, M. and Röder, M.S., Microsatellite and SNP Markers in Wheat Breeding, in Genomics-Assisted Crop Improvement, Varshney, R.K. and Tuberosa, R., Eds., Vol. 2: Genomics Applications in Crops, Dordrecht (The Netherlands): Springer, 2007, pp. 1–24.

    Chapter  Google Scholar 

  • Goulden, C.H., Neatby, K.W., and Welsh, J.N., The Inheritance of Resistance to Puccinia graminis tritici in a Cross between to Varieties of Triticum vulgare, Phytopathology, 1928, vol. 18, p. 627.

    Google Scholar 

  • Gulyaeva, Z.B., Localization of Genes Controlling Pubescence of the Glumes and Coloring Leaf Sheath Ears in the Winter Variety “Ulyanovka,” Tr. Prikl. Botan. Genet. Selektsii, Leningrad, 1984, vol. 85, pp. 95–96.

    Google Scholar 

  • Himi, E., Nisar, A., and Noda, K., Colour Genes (R and Rc) for Grain and Coleoptile Upregulate Flavonoid Biosynthesis Genes in Wheat, Genome, 2005, vol. 48, pp. 747–754.

    Article  PubMed  CAS  Google Scholar 

  • Himi, E. and Noda, K., Red Grain Colour Gene (R) of Wheat Is a Myb-Type Transcription Factor, Euphytica, 2005, vol. 143, pp. 239–242.

    Article  CAS  Google Scholar 

  • Himi, E., Maekawa, M., Miura, H., and Noda, K., Development of PCR Markers for Tamyb10 Related to R-1, Red Grain Color Gene in Wheat, Theor. Appl. Genet., 2011, vol. 122, pp. 1561–1576.

    Article  PubMed  CAS  Google Scholar 

  • Howard, A. and Howard, G., On the Inheritance of Some Characters in Wheat. I, India Dept. Agr. Mem. Bot. Ser., 1912, vol. 5, pp. 1–47.

    Google Scholar 

  • Howard, A. and Howard, G., On the Inheritance of Some Characters in Wheat. II, India Dept. Agr. Mem. Bot. Ser., 1915, vol. 7, pp. 273–285.

    Google Scholar 

  • Hu, J., Anderson, B., and Wessler, R., Isolation and Characterization of Rice R Genes: Evidence for Distinct Evolutionary Paths in Rice and Maize, Genetics, 1996, vol. 142, pp. 1021–1031.

    PubMed  CAS  Google Scholar 

  • Jha, K.K., The Association of a Gene for Purple Coleoptile with Chromosome 7D of Common Wheat, Can. J. Genet. Cytol., 1964, vol. 6, pp. 370–372.

    Google Scholar 

  • Jones, S.S., Dvorak, J., and Qualset, C.O., Linkage Relations of Gli-D1, Rg2, and Lr21 on the Short Arm of Chromosome 1D in Wheat, Genome, 1990, vol. 33, pp. 937–940.

    Article  CAS  Google Scholar 

  • Kadam, B.S., Genetics in Bansi Wheat of the Bombay-Deccan and Synthetic Khapli. Part I, Proc. Indian Acad. Sci., 1936, vol. 4, pp. 357–369.

    Google Scholar 

  • Kerber, E.R. and Dyck, P.L., Inheritance in Hexaploid Wheat of Leaf Rust Resistance and Other Characters Derived from Aegilops squarrosa, Can. J. Genet. Cytol., 1969, vol. 11, pp. 639–647.

    Google Scholar 

  • Kezer, A. and Boyack, B., Mendelian Inheritance in Wheat and Barley Crosses, with Probable Error Studies on Class Frequencies, Colo. Agr. Exp. Sta. Bul., 1918, p. 249.

  • Khlestkina, E.K., Genomic Localization and Structural-Functional Characteristics of Flavonoid Biosynthesis Genes of Wheat and Its Relatives, Doctoral (Biol.) Dissertation, Novosibirsk: ICG SB RAS, 2011.

    Google Scholar 

  • Khlestkina, E.K., Salina, E.A., Pshenichnikova, T.A., et al., Analysis of Near-Isogenic Lines of Common Wheat Carrying the Dominant Alleles of Bg, Hg, and Rg1 Genes Using Microsatellite and Protein Markers, Russ. J. Genet., 2000, vol. 36, no. 10, pp. 1153–1158.

    CAS  Google Scholar 

  • Khlestkina, E.K., Pestsova, E.G., Röder, M.S., and Börner, A., Molecular Mapping, Phenotypic Expression and Geographical Distribution of Genes Determining Anthocyanin Pigmentation of Coleoptiles in Wheat (Triticum aestivum L.), Theor. Appl. Genet., 2002a, vol. 104, pp. 632–637.

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina, E.K., Pestsova, E.G., Salina, E.A., et al., Molecular Mapping and Tagging of Wheat Genes using RAPD, STS and SSR Markers, Cell. Mol. Biol. Lett., 2002b, vol. 7, pp. 795–802.

    PubMed  CAS  Google Scholar 

  • Khlestkina, E.K., Pshenichnikova, T.A., Röder, M.S., et al., Comparative Mapping of Genes for Glume Colouration and Pubescence in Hexaploid Wheat (Triticum aestivum L.), Theor. Appl. Genet., 2006, vol. 113, pp. 801–807.

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina, E.K., Röder, M.S., Pshenichnikova, T.A., et al., Genes for Anthocyanin Pigmentation in Wheat: Review and Micro-Satellite-Based Mapping, in Chromosome Mapping Research Developments, Verrity, J.F. and Abbington, L.E., Eds., New York: NOVA Science Publishers, Inc., 2008, pp. 155–175.

    Google Scholar 

  • Khlestkina, E.K., Röder, M.S., and Salina, E.A., Relationship between Homoeologous Regulatory and Structural Genes in Allopolyploid Genome-A Case Study in Bread Wheat, BMC Plant Biol., 2008b, vol. 8, p. 88.

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina, E.K., Giura, A., Röder, M.S., and Börner, A., A New Gene Controlling the Flowering Response to Photoperiod in Wheat, Euphytica, 2009a, vol. 165, pp. 579–585.

    Article  CAS  Google Scholar 

  • Khlestkina, E.K., Pshenichnikova, T.A., Röder, M.S., and Börner, A., Clustering Anthocyanin Pigmentation Genes in Wheat Group 7 Chromosomes, Cereal Res. Commun., 2009b, vol. 37, pp. 391–398.

    Article  CAS  Google Scholar 

  • Khlestkina, E.K., Röder, M.S., and Börner, A., Identification of Glume Coloration Genes in Synthetic Hexaploid and Common Wheats, Wheat Inf. Serv. (eWIS), 2009c, vol. 108, pp. 1–3.

    Google Scholar 

  • Khlestkina, E.K., Salina, E.A., Pshenichnikova, T.A., et al., Glume Coloration in Wheat: Allelism Test, Consensus Mapping and Its Association with Specific Microsatellite Allele, Cereal Res. Commun., 2009d, vol. 37, pp. 37–43.

    Article  CAS  Google Scholar 

  • Khlestkina, E.K., Tereshchenko, O.Yu., and Salina, E.A., Anthocyanin Biosynthesis Genes Location and Expression in Wheat-Rye Hybrids, Mol. Genet. Genom., 2009e, vol. 282, pp. 475–485.

    Article  CAS  Google Scholar 

  • Khlestkina, E.K., in Advances in Genetics Research, Urbano, K.V., Ed., New York: NOVA Science Publishers, 2010, vol. 3, pp. 311–328.

    Google Scholar 

  • Khlestkina, E.K., Röder, M.S., and Börner, A., Mapping Genes Controlling Anthocyanin Pigmentation on the Glume and Pericarp in Tetraploid Wheat (Triticum durum L.), Euphytica, 2010a, vol. 171, pp. 65–69.

    Article  CAS  Google Scholar 

  • Khlestkina, E.K., Röder, M.S., Pshenichnikova, T.A., and Börner, A., Functional Diversity at Rc (Red Coleoptile) Locus in Wheat (Triticum aestivum L.), Mol. Breed., 2010b, vol. 25, pp. 125–132.

    Article  CAS  Google Scholar 

  • Khlestkina, E.K., Antonova, E.V., Pershina, L.A., et al., Variability of Rc (Red Coleoptile) Alleles in Wheat and Wheat-Alien Genetic Stock Collections, Cereal Res. Commun., 2011, vol. 39, pp. 465–474.

    Article  Google Scholar 

  • Kiessling, L., Erbanalytische Untersuchungen Uber Die Spelzen-Farbe Des Weizens, Landw. Jahrbuch Bayern, 1914, no. 2, pp. 102–170.

  • Korzun, V., Röder, M.S., Wendehake, K., et al., Integration of Dinucleotide Microsatellites from Hexaploid Wheat into a Genetic Linkage Map of Durum Wheat, Theor. Appl. Genet., 1999, vol. 98, pp. 1202–1207.

    Article  CAS  Google Scholar 

  • Koval’, S.F., The Catalog of Near-Isogenic Lines of Novosibirskaya-67 Common Wheat and Principles of Their Use in Experiments, Russ. J. Genet., 1997, vol. 33, no. 8, pp. 995–100.

    Google Scholar 

  • Kuchel, H., Hollamby, G., Langridge, P., et al., Identification of Genetic Loci Associated with Ear-Emergence in Bread Wheat, Theor. Appl. Genet., 2006, vol. 113, pp. 1103–1112.

    Article  PubMed  CAS  Google Scholar 

  • Kudryavtsev, A.M. and Popova, T.A., Genetic Linkage between the Gliadin-Encoding Genes and the Genes That Determine the Ear Color and Pubescence in Spring Durum Wheat (Triticum durum Desf.), Genetika, 1994, vol. 30, pp. 1587–1592.

    CAS  Google Scholar 

  • Kuraparthy, V., Sood, S., and Gill, B.S., Targeted Genomic Mapping of a Red Seed Color Gene (R-A1) in Wheat, Crop Sci., 2008, vol. 48, pp. 37–48.

    Article  CAS  Google Scholar 

  • Kuspira, J. and Unrau, J., Determination of the Number and Dominance Relationships of Genes on Substituted Chromosomes in Common Wheat Triticum aestivum L., Can. J. Plant. Sci., 1958, vol. 38, pp. 119–205.

    Article  Google Scholar 

  • Kuspira, J., Maclagan, J., Bhambhani, R.N., et al., Genetic and Cytogenetic Analyses of the A Genome of Triticum monococcum L. V. Inheritance and Linkage Relationships of Genes Determining the Expression of 12 Qualitative Characters, Genome, 1989, vol. 32, pp. 869–881.

    Article  Google Scholar 

  • Laikova, L.I., Arbuzova, V.S., Efremova, T.T., and Popova, O.M., Genetic Analysis of Anthocyanin Pigmentation of the Anthers and Culm in Common Wheat, Russ. J. Genet., 2005, vol. 41, no. 10, pp. 1176–1181.

    Article  CAS  Google Scholar 

  • Law, C.N. and Wolfe, M.C., Location of Genetic Factors for Mildew Resistance and Ear Emergence Time on Chromosome 7B of Wheat, Can. J. Genet. Cytol., 1966, vol. 8, pp. 462–470.

    Google Scholar 

  • Law, C.N. and Chapman, V., An Inhibitor of Glume Colour, EWAC Newslett, 1974, vol. 4, pp. 8–9.

    Google Scholar 

  • Leisle, D., Kovacs, M.I., and Howes, N., Inheritance and Linkage Relationships of Gliadin Proteins and Glume Color in Durum Wheat, Can. J. Genet. Cytol., 1985, vol. 27, pp. 716–721.

    Google Scholar 

  • Li, W.L., Faris, J.D., Chittoor, J.M., et al., Genomic Mapping of Defense Response Genes in Wheat, Theor. Appl. Genet., 1999, vol. 98, pp. 226–233.

    Article  CAS  Google Scholar 

  • Li, J., Wei, H., Hu, X., et al., Locus R-D1 Conferring Red-Grain-Color in Synthetic Derivative Wheat Chuanmai 42 Mapped with SSR Markers, Mol. Plant Breed., 2010, vol. 1, pp. 16–20.

    Google Scholar 

  • Liu, X.M., Smith, C.M., Gill, B.S., and Tolmay, V., Microsatellite Markers Linked to Six Russian Wheat Aphid Resistance Genes in Wheat, Theor. Appl. Genet., 2001, vol. 102, pp. 504–510.

    Article  CAS  Google Scholar 

  • Liu, X.M., Smith, C.M., and Gill, B.S., Identification of Microsatellite Markers Linked to Russian Wheat Aphid Resistance Genes Dn4 and Dn6, Theor. Appl. Genet., 2002, vol. 104, pp. 1042–1048.

    Article  PubMed  CAS  Google Scholar 

  • Lohwasser, U., Röder, M.S., and Börner, A., QTL Mapping of Vegetative Characters in Wheat (Triticum aestivum L.), in Gen. Var. Plant Breed.: Proc. 17th Eucarpia Gen. Congr. Tulln, 8–11 September, 2004. P. 195–198

  • Ludwig, S.R., Habera, L.F., Dellaporta, S.L., and Wessler, S.R., Lc, a Member of the Maize R Gene Family Responsible for Tissue-Specific Anthocyanin Production, Encodes a Protein Similar to Transcriptional Activators and Contains the Myc-Homology Region, Proc. Natl. Acad. Sci. U.S.A., 1989, vol. 86, pp. 7092–7096.

    Article  PubMed  CAS  Google Scholar 

  • Lundqvist, U., Franckowiak, J.D., and Konishi, T., New and Revised Descriptions of Barley Genes, Barley Genet. Newslett., 1996, vol. 26, pp. 22–43.

    Google Scholar 

  • Maistrenko, O.I., The Use of Cytogenetic Methods to Study the Common Wheat Ontogeny, in Ontogenetika vysshikh rastenii: Sb. Tr. Konf. (Ontogenetics of Higher Plants: Proc. Conf.), Chisinau, 1992, pp. 98–113.

  • Malinowski, E., Les Hybrids du Froment, Bull. Intern. Acad. Sci. Cracovie, 1914, vol. 3, pp. 410–450.

    Google Scholar 

  • Martynov, S.P. and Dobrotvorskaya, T.V., Distribution Characteristics of Ear Morphology Traits in Common Wheat in the Former Soviet Union, Russ. J. Genet., 1997, vol. 33, no. 3, pp. 277–284.

    CAS  Google Scholar 

  • Matsumura, S., Linkage Studies in Wheat, II. P-Linkage and the Manifold Effects of P Gene, Jpn. J. Genet., 1950, vol. 25, pp. 111–118.

    Article  Google Scholar 

  • Maystrenko, O.I. and Laikova, L.I., Chromosomal Localization and Linkage Relationship of the Pan1 and Pc2 Genes Controlling Anthocyanin Pigmentation of the Anthers and Culm in Common Wheat, EWAC Newslett., 1995, vol. 9, pp. 120–122.

    Google Scholar 

  • McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., et al., Catalogue of Gene Symbols for Wheat, 2008. http://www.grs.nig.ac.jp/wheat/komugi/genes/

  • McIntosh, R.A., Hart, C.E., Devos, K.M., et al., Catalogue of Gene Symbols for Wheat, Proc. IX Intern. Wheat Genet. Symp., Saskatoon, 1998, vol. 5.

  • McIntosh, R.A. and Backer, E.P., Inheritance of Purple Pericarp in Wheat, Proc. Linnean Soc., 1967, vol. 92, pp. 204–208.

    Google Scholar 

  • Melz, G. and Thiele, V., Chromosome Locations of Genes Controlling’ Purple Leaf Base’ in Rye and Wheat, Euphytica, 1990, vol. 49, pp. 155–159.

    Article  Google Scholar 

  • Metzger, R.J. and Silbaugh, B.A., Location of Genes for Seed Coat Color in Hexaploid Wheat Triticum aestivum L., Crop Sci., 1970, vol. 10, pp. 495–496.

    Article  Google Scholar 

  • Miller, T.E., The Homoeologous Relationship Between the Chromosomes of Rye and Wheat. Current Status, Can. J. Genet. Cytol., 1984, vol. 26, pp. 578–589.

    Google Scholar 

  • Miyamoto, T. and Everson, E.H., Biochemical and Physiological Studies of Wheat Seed Pigmentation, Agron. J., 1958, vol. 50, pp. 733–734.

    Article  CAS  Google Scholar 

  • Nalam, V.J., Vales, M.I., Watson, C.J., et al., Map-Based Analysis of Genes Affecting the Brittle Rachis Character in Tetraploid Wheat (Triticum turgidum L.), Theor. Appl. Genet., 2006, vol. 112, pp. 373–381.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, J.C., Sorrels, M.E., van Deynze, A.E., et al., Molecular Mapping of Wheat: Major Genes and Rearrangements in Homoeologous Groups 4, 5, and 7, Genetics, 1995, vol. 141, pp. 721–731.

    PubMed  CAS  Google Scholar 

  • Nilsson-Ehle, H., Kreuzungsversuchungen an Hafer und Weizen, Lands. Univ. Aersskrift N.F. Afd., 1909, no. (2), p. 122.

  • Nilsson-Ehle, H., Zur Kenntnis der Mit der Keimungsphysiologie des Weizens in Zusammenhang Stehenden Inneren Faktoren, Z. Pflanzenzct., 1914, vol. 2, pp. 153–187.

    Google Scholar 

  • Panin, V.M. and Netsvetaev, V.P., Genetic Control of Gliadin and Some Forms of Morphological Traits of the Spike in Hard Winter Wheat, Nauch.-Tekhn. Byul. VSGI (Odessa), 1986, no. 2, pp. 31–36.

  • Payne, P.I., Holt, L.M., Johnson, R., and Snape, J.W., Linkage Mapping of Four Gene Loci Glu-B1, Gli-B1, Rg1, and Yr10 on Chromosome 1B of Bread Wheat, Genet. Agrar., 1986, vol. 40, pp. 231–242.

    CAS  Google Scholar 

  • Percival, J., The Wheat Plant: A Monograph, London: Duckworth and Co., 1921.

    Book  Google Scholar 

  • Piech, J. and Evans, L.E., Monosomic Analysis of Purple Grain Colour in Hexaploid Wheat, J. Pflanzenzucht., 1979, vol. 82, pp. 212–217.

    Google Scholar 

  • Pshenichnikova, T.A., Ermakova, M.F., Chistyakova, A.K., et al., Mapping of QTLs Associated with the Important Agronomic Traits Using Recombinant Substitution Dihaploid Lines “Saratovskaya 29” (“Janetzkis Probat 4D”), Abstr. German-Russian Forum Biotechnology (GRFB), Novosibirsk, June, 15–19, 2009, p. 39.

  • Pshenichnikova, T.A. and Maystrenko, O.I., Inheritance of Genes Coding for Gliadin Proteins and Glume Colour Introgressed into Triticum aestivum from a Synthetic Wheat, Plant Breed., 1995, vol. 114, pp. 501–504.

    Article  CAS  Google Scholar 

  • Pshenichnikova, T.A., Bokarev, I.E., and Shchukina, L.V., Hybrid and Monosomic Analyses of Smoky Coloration of the Ear in Common Wheat, Russ. J. Genet., 2005, vol. 41, no. 8, pp. 941–944.

    Article  CAS  Google Scholar 

  • Pukhal’skii, V.A., The Number of Genes Encoding Grain Color in Spring Wheat (Triticum aestivum L.) Varieties, Genetika, 1984, vol. 20, pp. 457–461.

    Google Scholar 

  • Quisenberry, K.S., Inheritance of Winter Hardiness, Growth Habit and Stem Rust Reaction in Crosses between Minhardi Winter and H-44 Spring Wheats, Tech. Bull. U.S.D.A, 1931, no. 218, pp. 1–45.

  • Röder, M.S., Korzun, V., Wendehake, K., et al., A Microsatellite Map of Wheat, Genetics, 1998, vol. 149, pp. 2007–2023.

    PubMed  Google Scholar 

  • Röder, M.S., Huang, X.Q., and Börner, A., Fine Mapping of the Region on Wheat Chromosome 7D Controlling Grain Weight, Funct. Integr. Genomics, 2008, vol. 8, pp. 79–86.

    Article  PubMed  CAS  Google Scholar 

  • Rowland, G.G. and Kerber, E.R., Telocentric Mapping in Hexaploid Wheat of Genes for Leaf Rust Resistance and Other Characters Derived from Aegilops squarrosa, Can. J. Genet. Cytol., 1974, vol. 16, pp. 137–144.

    Google Scholar 

  • Salina, E.A., Leonova, I.N., Efremova, T.T., and Röder, M.S., Wheat Genome Structure: Translocations during the Course of Polyploidization, Funct. Integr. Genomics, 2006, vol. 6, pp. 71–80.

    Article  PubMed  CAS  Google Scholar 

  • Sears, E.R., The Aneuploids of Common Wheat, Univ. Mo. Agr. Sta. Res. Bull., 1954, vol. 572, pp. 1–59.

    Google Scholar 

  • Shraiber, L.L., Anthocyanins, in Pshenitsy Abissinii i ikh polozhenie v obshchei sisteme pshenits (K poznaniyu 28-khromosomnoi gruppy kul’turnykh pshenits) (Wheats of Abyssinia and Their Position in the Overall System of Wheat (to the Knowledge of 28-Chromosome Group of Cultivated Wheats), Vavilov, N.I., Ed., Leningrad: VIR, 1931, pp. 16–17.

    Google Scholar 

  • Sikka, S.M., Jain, K.B.L., and Parmer, K.S., Inheritance of Some Morphological Characters in Intervarietal Crosses of Triticum Aestivum L, J. Ind. Bot. Soc., 1961, vol. 40, pp. 217–233.

    Google Scholar 

  • Simon, M.R., Khlestkina, E.K., Castillo, N.S., and Börner, A., Mapping Quantitative Resistance to Septoria tritici Blotch in Spelt Wheat, Eur. J. Plant Pathol., 2010, vol. 128, pp. 317–324.

    Article  Google Scholar 

  • Singh, K., Ghai, M., Garg, M., et al., An Integrated Molecular Linkage Map of Diploid Wheat Based on a Triticum boeoticum T. monococcum RIL Population, Theor. Appl. Genet., 2007, vol. 115, pp. 301–312.

    Article  PubMed  CAS  Google Scholar 

  • Sinskaya, E.O., On Field Crops of Altai (A Summary of the Trip in the Summer of 1924), Tr. Prikl. Botan. Selekts., 1925, vol. 14, pp. 359–376.

    Google Scholar 

  • Sobko, T.A. and Sozinov, A.A., Genetic Control of Morphological Characters of Spike and the Relationship between the Allelic Variability of Marker Loci of Chromosomes 1a and 1B of Common Winter Wheat, Tsitol. Genet., 1993, vol. 27, pp. 15–22.

    Google Scholar 

  • Sobko, T.A. and Sozinov, A.A., Mapping the Loci Controlling Spike Morphological Characters and Grain Storage Proteins in Chromosome 1a of Common Winter Wheat, Tsitol. Genet., 1997, vol. 31, pp. 18–26.

    Google Scholar 

  • Spillman, W.J., Quantitative Studies on the Transmission of Parental Characters to Hybrid Offspring, U.S.D.A. Off. Exp. Sta. Bull., 1902, no. 115, pp. 88–89.

  • Stein, N., Prasad, M., Scholz, U., et al., A 1,000-Loci Transcript Map of the Barley Genome: New Anchoring Points for Integrative Grass Genomics, Theor. Appl. Genet., 2007, vol. 114, pp. 823–839.

    Article  PubMed  CAS  Google Scholar 

  • Sutka, J., The Association of Genes for Purple Coleoptile with Chromosomes of the Wheat Variety Mironovskaya 808, Euphytica, 1977, vol. 26, pp. 475–479.

    Article  Google Scholar 

  • Tahir, C.M. and Tsunewaki, K., Monosomic Analysis of Triticum spelta var. duhamelianum, a Fertility-Restorer for T. timopheevi Cytoplasm, Jpn. J. Genet., 1969, vol. 44, pp. 1–9.

    Article  Google Scholar 

  • Tereshchenko O.Y., Pshenichnikova T.A., Salina E.A., Khlestkina E.K. Development and molecular characterization of a novel wheat genotype having purple grain colour // Cereal Res. Commun. 2012a. vol. 40, pp. 210–214.

    Article  CAS  Google Scholar 

  • Tereshchenko, O.Y., Gordeeva, E.I., Arbuzova, V.S., et al., The D Genome of Wheat Carries One of the Two Complementary Genes Determining Purple Grain Colour in Wheat, Cereal Res. Commun., 2012b, vol. 40, pp. 408–415.

    Google Scholar 

  • Tschermak, E., Ueber Zuchtung Neuer Getreiderassen Mittelst Kunstlicher Kreuzung, Zeitschr. Landw. Versuch. Oester-reich, 1901, vol. 4, pp. 1029–1060.

    Google Scholar 

  • Unrau, J., The Use of Monosomes and Nullisomes in Cytogenetic Studies in Common Wheat, Sci. Agr., 1950, vol. 30, pp. 66–89.

    Google Scholar 

  • Vatsenko, A.A., Inheritance of Scale Pubescence and Spike Black Color in Hard Wheat Triticum durum Desf., Dokl. Akad. Nauk SSSR, 1934, vol. 4, pp. 338–342.

    Google Scholar 

  • Vavilov, N.I., Nauchnye osnovy selektsii pshenitsy (Scientific Basis of Wheat Breeding), Moscow: Sel’khozgiz, 1935.

    Google Scholar 

  • de Vries, J.N. and Sybenga, J., Chromosomal Location of 17 Monogenically Inherited Morphological Markers in Rye (Secale cereale L.) Using Translocation Tester Set, Z. Pflanzenzucht., 1984, vol. 192, pp. 117–139.

    Google Scholar 

  • Wang, H.-J., Huang, X.Q., Röder, M.S., and Börner, A., Genetic Mapping of Loci Determining Long Glumes in the Genus Triticum, Euphytica, 2002, vol. 123, pp. 287–293.

    Article  CAS  Google Scholar 

  • Wang, C. and Shu, Q., Fine Mapping and Candidate Gene Analysis of Purple Pericarp Gene Pb in Rice (Oryza sativa L.), Chinese Sci. Bull., 2007, vol. 52, pp. 3097–3104.

    Article  CAS  Google Scholar 

  • Watanabe, N., Near-Isogenic Lines of Durum Wheat: Their Development and Plant Characteristics, Euphytica, 1994, vol. 72, pp. 143–147.

    Article  Google Scholar 

  • Winkel-Shirley, B., Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology and Biotechnology, Plant Physiol., 2001, vol. 126, pp. 485–493.

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley, B., Biosynthesis of Flavonoids and Effects of Stress, Curr. Opin. Plant Biol., 2002, vol. 5, pp. 218–223.

    Article  PubMed  CAS  Google Scholar 

  • Worland, A.J., Law, C.N., Hollins, T.W., et al., Location of a Gene for Resistance to Eyespot (Pseudocercosporella herpotrichoides) on Chromosome 7D of Bread Wheat, Plant Breed., 1988, vol. 101, pp. 43–51.

    Article  Google Scholar 

  • Worzella, W.W., Research in Soft Red Winter Wheat, Purdue Univ. Agr. Exp. Sta. Ann. Rep., 1937, vol. 50, p. 26.

    Google Scholar 

  • Worzella, W.W., Inheritance and Inter-Relationship of Components of Quality, Cold Resistance and Morphological Characters in Wheat Hybrids, J. Agric. Res., 1942, vol. 65, pp. 501–522.

    CAS  Google Scholar 

  • Wu, C.S. and Ausemus, E.R., Inheritance of Leaf Rust and Other Characters in Spring Wheat Cross, Agron. J., 1930, vol. 45, pp. 43–48.

    Article  Google Scholar 

  • Yakubtsiner, M.M. and Savitskii, M.S., Cereals, in Rukovodstvo po aprobatsii sel’skokhozyaistvennykh kul’tur (Manual for Testing Crops), Moscow: Sel’khozgiz, 1947, p. 20.

    Google Scholar 

  • Zeller, F.J. and Koller, O.L., Identification of 4A/7R and 7B/4R Wheat-Rye Chromosome Translocation, Theor. Appl. Genet., 1981, vol. 59, pp. 33–37.

    Google Scholar 

  • Zeven, A.C., The Colour of the Coleoptile of Wheat: A Review and Geographical Distribution of the Purple Coleoptile of Triticum aestivum, Euphytica, 1973, vol. 22, pp. 471–478.

    Article  Google Scholar 

  • Zeven, A.C., The Character Brown Ear of Bread Wheat: A Review, Euphytica, 1983, vol. 32, pp. 299–310.

    Article  Google Scholar 

  • Zeven, A.C., Wheats with Purple and Blue Grains: A Review, Euphytica, 1991, vol. 56, pp. 243–258.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Khlestkina.

Additional information

Original Russian Text © E.K. Khlestkina, 2011, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2011, Vol. 16, No. 1, pp. 202–216.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khlestkina, E.K. Genes determining the coloration of different organs in wheat. Russ J Genet Appl Res 3, 54–65 (2013). https://doi.org/10.1134/S2079059713010085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059713010085

Keywords

Navigation