Skip to main content
Log in

Correlations of the Parameters of Carbohydrate Metabolism and Saturated Fatty Acids in the Blood Serum of Elderly People

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

The study involves 106 elderly subjects (61–74 years old) living in the Arctic; 42 of them are residents of the Subarctic region (SR) and 64, of the Arctic region (AR). The contents of saturated fatty acids (SFAs) comprising short chain (SCFA), medium chain (MCFA), and long chain (LCFA) fatty acids, are determined by gas liquid chromatography of the blood serum. The parameters of the carbohydrate metabolism are assessed by spectrophotometry. Correlation analysis demonstrates the absence of statistically significant correlations of glucose, lactate, and pyruvate levels with the contents of SCFAs, MCFAs, and LCFAs (r = 0.2–0.29, p = 0.08–0.786) among the examined elderly SR residents compared with the AR residents, who show lower rates of excess glucose and lactate and lower rates of deficient pyruvate. On the background of higher excess glucose and deficiency rates, the examined AR cohort shows the strongest correlations with LCFAs (hexadecanoic, heptadecanoic, octadecanoic, behenic, and tricosanoic acids), somewhat more moderate correlations with MCFAs (tetradecanoic and pentadecanoic acids) and SCFAs (pelargonic acid), correlations of pyruvate deficiency with MCFAs (dodecanoic and tetradecanoic acids and total MCFA content) and SCFAs (decanoic acid), and correlations of an insignificant decrease in the rate of excess lactate and lactate/pyruvate with LCFAs (hexadecanoic, heptadecanoic, octadecanoic, and tricosanoic acids), MCFAs (dodecanoic and tridecanoic acids), and SCFAs (hexanoic and caprylic acids).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Amelyushkina, V.A., Aripovskii, A.V., Titov, V.N., et al., Fatty acids in blood plasma and erythrocytes in the glucose tolerance test, Klin. Lab. Diagn., 2014, vol. 59, no. 4, pp. 4–11.

    Google Scholar 

  2. Amelyushkina, V.A., Rozhkova, T.A., and Titov, V.N., Palmitin and olein variants of fatty acid metabolism. Exogenous syndrome of insulin resistance in the impairment of the biological function of nutrition (trophology), Klin. Lab. Diagn., 2013, no. 7, pp. 21–38.

  3. Anisimov, V.N., Molekulyarnye i fiziologicheskie mekhanizmy stareniya (Molecular and Physiological Mechanisms of Aging), St. Petersburg: Nauka, 2008, vol. 2.

    Google Scholar 

  4. Bichkaeva, F.A., Endokrinnaya regulyatsiya metabolicheskikh protsessov u cheloveka na Severe (Endocrine Regulation of Metabolic Processes in Humans in the North), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2008.

    Google Scholar 

  5. Efremov, L.I. and Komissarenko, I.A., Metabolic continuum and polymorbidity in geriatrics, Eksper. Klin. Gastroenterol., 2014, vol. 106, no. 6, pp. 4–7.

    Google Scholar 

  6. Konev, Yu.V., Kuznetsov, O.O., Li, E.D., and Trubnikova, I.A., Specific nutrition of people in elderly and senile age, Ross. Med. Zh., 2009, vol. 17, no. 2, pp. 145–149.

    Google Scholar 

  7. Kotkina, T.I., Titov, V.N., and Parkhimovich, R.M., Other concepts about β-oxidation of fatty acids in peroxisomes, mitochondria and ketone bodies. Diabetic, acidotic coma as acute deficiency of acetyl-CoA and ATP, Klin. Lab. Diagn., 2014, no. 3, pp. 15–23.

  8. Nasledov, A.D., SPSS 15.0. Professional’nyi statisticheskii ananliz dannykh (SPSS 15.0.: Professional Statistical Data Analysis), St. Petersburg, 2008.

  9. Osipenko, A.N., Akulich, N.V., and Klishevich, F.N., Fatty acids of blood and their interrelations in atherosclerosis, Tavrich. Med.-Biol. Vestn., 2012, vol. 15, no. 3–2, p. 59.

  10. Sumerkina, V.A., Chulkov, V.S., Ozhigina, E.V., and Toropova, L.R., Assessment of adipokine level in patients with metabolic syndrome and isolated abdominal obesity, Klin. Lab. Diagn., 2015, no. 9, pp. 9–15.

  11. Tereshina, E.V., The role of fatty acids in the development of age-related oxidative stress: hypothesis, Usp. Gerontol., 2007, vol. 20, no. 1, pp. 59–65.

    Google Scholar 

  12. Titov, V.N. and Lisitsyn, D.M., Zhirnye kisloty. Fizicheskaya khimiya, biologiya i meditsina (Fatty Acids: Physical Chemistry, Biology, and Medicine), Moscow: Triada, 2006.

    Google Scholar 

  13. Titov, V.N., Medium-chain fatty acids: food content, physiology, metabolic features, and clinical use, Vopr. Pitan., 2012, vol. 81, no. 6, pp. 27–36.

    CAS  PubMed  Google Scholar 

  14. Tkachev, A.V., Boiko, E.R., and Gubkina, Z.D., Endokrinnaya sistema i obmen veshchestv u cheloveka na Severe (Endocrine System and Metabolism of a Man in the North), Syktyvkar: Komi Nauch. Tsentr, Ural. Otd., Ross. Akad. Nauk, 1992.

    Google Scholar 

  15. Bjursell, M., Admyre, T., Goransson, M., et al., Improved glucose control and reduced body fat mass in free fatty acid receptor 2-dericient mice fed a high-fat diet, Am. J. Physiol.-Endocrinol. Metab., 2011, vol. 300, no. 1, pp. 211–220.

    Article  CAS  Google Scholar 

  16. Bielohuby, M., Menhofer, D., Kirchner, H., et al., Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein, Am. J. Physiol.-Endocrinol. Metab., 2011, vol. 300, no. 1, pp. 65–76.

    Article  CAS  Google Scholar 

  17. Ebbesson, S.O., Risica, P.M., Ebesson, L.O., et al., Omega-3 fatty acids improve glucose tolerance and components of the metabolic syndrome in Alaskan Eskimos: the Alaska Siberia project, Int. J. Circumpolar Health, 2005, vol. 64, no. 4, pp. 396–408.

    Article  PubMed  Google Scholar 

  18. Min, Y., Lowy, C., Islam, S., et al., Relationship between red cell membrane fatty acids and adipokines in individuals with varying insulin sensitivity, Eur. J. Clin. Nutr., 2011, vol. 65, no. 6, pp. 690–695.

    Article  CAS  PubMed  Google Scholar 

  19. Stefan, N., Kantartzis, K., Celebi, N., et al., Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans, Diabetes Care, 2010, vol. 33, pp. 405–407.

    Article  CAS  PubMed  Google Scholar 

  20. Thorseng, T., Witte, D.R., Vistisen, D., et al., The association between n-3 fatty acids in erythrocyte membranes and insulin resistance: the Inuit Health in Transition Study, Int. J. Circumpolar Health, 2009, vol. 68, no. 4, pp. 327–336.

    Article  PubMed  Google Scholar 

  21. Folch, J., Less, M., and Sloane Stanley, G.H., A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem., 1957, vol. 226, pp. 497–509.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Bichkaeva.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bichkaeva, F.A., Volkova, N.I., Bichkaev, A.A. et al. Correlations of the Parameters of Carbohydrate Metabolism and Saturated Fatty Acids in the Blood Serum of Elderly People. Adv Gerontol 8, 347–354 (2018). https://doi.org/10.1134/S2079057018040033

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057018040033

Keywords:

Navigation