Skip to main content
Log in

Endothelial signaling molecules in the development of age-associated diseases

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Data on endothelial signaling molecules involved in homeostasis regulation and development of age-associated disorders are summarized. Regulation of the endothelium function is implemented by a system of signaling molecules: NO, NO synthase, prostacyclin, thrombomodulin, thromboxane, antithrombin, endothelins, fibronectin, von Willebrand factor, etc. Changes in their synthesis can cause arterial hypertension, atherosclerosis, ischemic heart disease, myocardial infarction, and other age-related disorders. Study of the molecular mechanisms mediating endothelial functioning is essential for developing new methods of diagnostics and a treatment for age-associated cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belousov, Yu.B. and Namsaraev, Zh.N., Endothelial dysfunction as a reason of atherosclerotic lesions of arteries in hypertension: the methods of correction, Farmateka, 2009, no. 6(84), pp. 62–72.

    Google Scholar 

  2. Biletskii, S.V., Endothelial dysfunction and pathology of cardiovascular system, Vnutr. Med., 2008, vol. 2, no. 8, pp. 134–139.

    Google Scholar 

  3. Gurevich, M.A. and Sturov, N.V., Deficiency of nitric oxide and maintenance of vascular homeostasis: role of mononitrates and problems of cytoprotection, Trudnyi Patsient, 2010, no. 3, pp. 23–29.

    Google Scholar 

  4. Markov, Kh.M., Nitric oxide and atherosclerosis: nitric oxide, vascular endothelial dysfunction and the pathogenesis of atherosclerosis, Kardiologiya, 2009, no. 11, pp. 64–74.

    Google Scholar 

  5. Smirnova, O.I., Markers of endothelial damage as a possible criterion of the effectiveness of treatment of arterial hypertension, Klin. Lab. Diagnostika, 2007, no. 2, pp. 40–42.

    Google Scholar 

  6. Sozykin, A.V., Noeva, E.A., Balakhonova, T.V., et al., Effect of L-arginine on platelet aggregation, endothelial function, and tolerance to the physical activity in patients with stable exertional angina, Ter. Arkh., 2008, no. 72(8), pp. 24–27.

    Google Scholar 

  7. Fesenko, E.V., Proshchaev, K.I., and Polyakov, V.I., Pleiotropic effects of statin therapy and their role in overcoming polymorbidity, Sovr. Probl. Nauki Obraz., 2012, no. 2, pp. 245–251.

    Google Scholar 

  8. Shevchenko, Yu.L., Stoiko, Yu.M., Gudymovich, V.G., et al., Endothelial dysfunction in patients with varicose veins of the lower extremities and the possibility of its correction, Angiol. Sosudistoi Khir., 2010, vol. 16, no. 4, pp. 137–142.

    Google Scholar 

  9. Alessi, M.C. and Juhan-Vague, I., Contribution of PAI-1 in cardiovascular pathology, Arch. Mal. Coeur Vaiss., 2004, vol. 97, no. 6, pp. 673–678.

    CAS  PubMed  Google Scholar 

  10. Alfieri, A., Ong, A.C., Kammerer, R.A., et al., Angiopoietin-1 regulates microvascular reactivity and protects the microcirculation during acute endothelial dysfunction: role of eNOS and VE-cadherin, Pharmacol. Res. Commun., 2014, vol. 80, pp. 43–51.

    Article  CAS  Google Scholar 

  11. Almudéver, P., Milara, J., De Diego, A., et al., Role of tetrahydrobiopterin in pulmonary vascular remodeling associated with pulmonary fibrosis, Thorax, 2013, vol. 68, no. 10, pp. 938–948.

    Article  PubMed  Google Scholar 

  12. Baylis, C., Nitric oxide deficiency in chronic kidney disease, J. Physiol. Renal Physiol., 2008, vol. 294, pp. 1–9.

    Article  Google Scholar 

  13. Brunini, T.M., Moss, M.B., Siqueira, M.A., et al., Nitric oxide, malnutrition and chronic renal failure, Cardiovasc. Hematol. Agents Med. Chem., 2007, vol. 5, no. 2, pp. 155–161.

    Article  CAS  PubMed  Google Scholar 

  14. Brunner, H., Cockroft, J.R., Deanfield, J., et al., Endothelial function and dysfunction. Part II, J. Hypertens., 2005, vol. 23, pp. 233–246.

    Article  CAS  PubMed  Google Scholar 

  15. Bryan, N.S. and Bian, K.F., Discovery of the nitric oxide signaling pathway and targets for drug development, Front. Biosci., 2009, vol. 14, pp. 1–18.

    Article  CAS  Google Scholar 

  16. Chao, T.H., Tsai, W.C., Chen, J.Y., et al., Soluble thrombomodulin is a paracrine anti-apoptotic factor for vascular endothelial protection, Int. J. Cardiol., 2014, pp. S0167–0175.

    Google Scholar 

  17. Chen, W., Endothelial cell barrier protection by simvastatin: GTPase regulation and NADPH oxidase inhibition, Am. J. Physiol.: Lung Cell. Mol. Physiol., 2008, vol. 295, pp. L575–L583.

    CAS  Google Scholar 

  18. Choi, Y.J., Kim, H.S., Lee, J., et al., Down-regulation of oxidative stress and COX-2 and iNOS expressions by dimethyl lithospermate in aged rat kidney, Arch. Pharm. Res., 2014, vol. 134, pp. 1478–1485.

    Google Scholar 

  19. Doroshenko, B.H., Saliuta, M., Nazar, P.S., et al., State of physiological anticoagulant heparin, antithrombin III and their correction with medicines in patients with acute viral myocarditis, Lik Sprava., 2008, nos. 7–8, pp. 31–34.

    PubMed  Google Scholar 

  20. Dzugkoev, S.G., Metel’skaya, V.A., and Dzugkoeva, F.S., Effects of endogenous regulators of endothelial NOsynthase on nitric oxide homeostasis and blood serum lipoproteins during experimental diabetes mellitus, Bull. Exp. Biol. Med., 2013, vol. 156, no. 2, pp. 205–208.

    Article  CAS  PubMed  Google Scholar 

  21. Ebong, E.E., Lopez-Quintero, S.V., Rizzo, V., et al., Shear-induced endothelial NOS activation and remodeling via heparin sulfate, glypican-1, and syndecan-1, Integr. Biol., 2014, vol. 434, pp. 1345–1352.

    Google Scholar 

  22. Fang, H., Chen, W., Gao, Y., et al., Molecular mechanisms associated with angiotensin-converting enzymeinhibitory peptide activity on vascular extracellular matrix remodeling, Cardiology, 2014, vol. 127, no. 4, pp. 247–255.

    Article  CAS  PubMed  Google Scholar 

  23. Green, D.J., Jones, H., Thijssen, D., et al., Flowmediated dilation and cardiovascular event prediction: does nitric oxide matter, Hypertension, 2011, vol. 57, pp. 363–369.

    Article  CAS  PubMed  Google Scholar 

  24. Guidelines of cardiovascular disease prevention in clinical practice. Joint task force of the European society of cardiology and other societies on cardiovascular disease prevention in clinical practice, Eur. Heart J., 2007, vol. 28, pp. 2375–2414.

    Article  Google Scholar 

  25. Gyongyosi, M., Glogar, D., Weidinger, F., et al., Association between plasmin activation system and intravascular ultrasound signs of plaque instability in patients with unstable angina and non-ST-segment elevation myocardial infarction, Am. Heart J., 2004, vol. 147, no. 1, pp. 158–164.

    Article  PubMed  Google Scholar 

  26. Horinouchi, T., Terada, K., Higashi, T., and Miwa, S., Endothelin receptor signaling: new insight into its regulatory mechanisms, J. Pharmacol. Sci., 2013, vol. 123, no. 2, pp. 85–101.

    Article  CAS  PubMed  Google Scholar 

  27. Iba, T., Miki, T., Hashiguchi, N., et al., Combination of antithrombin and recombinant thrombomodulin attenuates leukocyteendothelial interaction and suppresses the increase of intrinsic damage-associated molecular patterns in endotoxemic rats, J. Surg. Res., 2013, pp. S0022–0031.

    Google Scholar 

  28. Irani, S., Salajegheh, A., Smith, R.A., and Lam, A.K., A review of the profile of endothelin axis in cancer and its management, Crit. Rev. Oncol. Hematol., 2014, vol. 89, no. 2, pp. 314–321.

    Article  PubMed  Google Scholar 

  29. Isakadze, A., Burkadze, N., and Noniashvili, M., The importance of risk factors in emergence and development of ischemic heart disease, Georgian Med. News, 2011, vol. 11, no. 200, pp. 56–59.

    CAS  PubMed  Google Scholar 

  30. Jiang, D.M., Han, J., Zhu, J.H., et al., Paracrine effects of bone marrow-derived endothelial progenitor cells: cyclooxygenase-2/prostacycli pathway in pulmonary arterial hypertension, PLoS One, 2013, vol. 18, no. 8(11), pp. 79215–79220.

    Article  Google Scholar 

  31. Kohan, D.E., Role of collecting duct endothelin in control of renal function and blood pressure, Am. J. Physiol.: Regul., Integr. Comp. Physiol., 2013, vol. 305, no. 7, pp. R659–R668.

    CAS  Google Scholar 

  32. Kolettis, T.M., Ventricular tachyarrhythmias during acute myocardial infarction: the role of endothelin-1, Life Sci., 2014, pp. 2321–2329.

    Google Scholar 

  33. Lundgren, C.H., Sawa, H., Sobel, B.E., and Fuji, S., Modulation of expression of monocyte/macrophage plasminogen activator activity and its implications for attenuation of vasculopathy, Circulation, 1994, vol. 90, pp. 1927–1934.

    Article  CAS  PubMed  Google Scholar 

  34. Maurin, N., The role of platelets in atherosclerosis, diabetes mellitus, and chronic kidney disease. An attempt at explaining the treat study results, Med. Klin., 2010, vol. 105, no. 5, pp. 339–344.

    Article  CAS  Google Scholar 

  35. Mayer, B., Translocation of endothelial nitric oxide synthase: another feat of amlodipine, a cardiovascular jack-of-all-trades, Cardiovasc. Res., 2006, vol. 71, pp. 411–413.

    Article  CAS  PubMed  Google Scholar 

  36. Meng, W., Zhao, W., Zhao, T., et al., Autocrine and paracrine function of angiotensin 1–7 in tissue repair during hypertension, Am. J. Hypertens., 2014, vol. 112, pp. 1321–1328.

    Google Scholar 

  37. Montoro-García, S., Shantsila, E., and Lip, G.Y., Potential value of targeting von Willebrand factor in atherosclerotic cardiovascular disease, Exp. Opin. Ther. Targets, 2014, vol. 18, no. 1, pp. 43–53.

    Article  Google Scholar 

  38. Nyberg, M., Seidelin, K., and Rostgaard, A.T., Biomarkers of vascular function in preand recent postmenopausal women of similar age: effect of exercise training, Am. J. Physiol.: Regul., Integr. Comp. Physiol., 2014, vol. 112, pp. 1355–1361.

    Google Scholar 

  39. Oka, R.K., Szuba, A., Giacomini, J.C., and Cooke, J.P., A pilot study of L-arginine supplementation on functional capacity in peripheral arterial disease, Vasc. Med., 2005, vol. 10, no. 4, pp. 265–274.

    Article  PubMed  Google Scholar 

  40. Peshavariya, H.M., Liu, G.S., Chang, C.W., et al., Prostacyclin signaling boosts NADPH oxidase 4 in the endothelium promoting cytoprotection and angiogenesis, Antioxid. Redox Signaling, 2014, vol. 121, pp. 1568–1574.

    Google Scholar 

  41. Saddadi, F., Alatab, S., Pasha, F., et al., The effect of treatment with N-acetylcysteine on the serum levels of C-reactive protein andinterleukin-6 in patients on hemodialysis, Saudi J. Kidney Dis. Transplantol., 2014, vol. 25, no. 1, pp. 66–72.

    Article  Google Scholar 

  42. Shanahan, L., Freeman, J., and Bauldry, S., Is very high C-reactive protein in young adults associated with indicators of chronic disease risk?, Psychoneuroendocrinology, 2014, vol. 40, pp. 76–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Shawn, S., Badal, R., Farhad, R., and Danesh, J., Strategies to reverse endothelial dysfunction in diabetic nephropathy, Kidney Int., 2012, vol. 82, no. 11, pp. 1151–1154.

    Article  Google Scholar 

  44. Senchenkova, E.Y., Russell, J., Esmon, C.T., and Granger, D.N., Roles of coagulation and fibrinolysis in angiotensin IIenhanced microvascular thrombosis, Microcirculation, 2014, vol. 335, pp. 1890–1897.

    Google Scholar 

  45. Skoglund, P.H., Arpegard, J., Ostergren, J., and Svensson, P., Amino-terminal pro-B-type natriuretic peptide and high-sensitivity C-reactive protein but not cystatin C predict cardiovascular events in male patients with peripheral artery disease independently of ambulatory pulse pressure, Amer. J. Hypertens., 2014, vol. 27, no. 3, pp. 363–371.

    Article  CAS  Google Scholar 

  46. Tang, L., Wang, H., and Ziolo, M.T., Targeting NOS as a therapeutic approach for heart failure, Pharmacol. Ther., 2013, pp. S0163–7258.

    Google Scholar 

  47. Versari, D., Daghini, E., Virdis, A., et al., Endothelial dysfunction as a target for prevention of cardiovascular disease, Diabetes Care, 2009, vol. 32, pp. 314–321.

    Article  Google Scholar 

  48. Yammine, L., Kang, D.H., Baun, M.M., and Meininger, J.C., Endothelin-1 and psychosocial risk factors for cardiovascular disease: a systematic review, Psychosom. Med., 2014, vol. 76, no. 2, pp. 109–121.

    Article  CAS  PubMed  Google Scholar 

  49. Zurek, P., Debin-ski, M., Czerwinski, W., et al., Acute myocardial infarction with simultaneous occlusions of two coronary arteries in a 44 year-old man, Kardiol. Pol., 2013, vol. 71, no. 3, pp. 279–282.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Linkova.

Additional information

Original Russian Text © K.L. Kozlov, V.M. Soldatov, E.M. Paltseva, E.V. Sedov, V.O. Polyakova, N.S. Linkova, 2015, published in Uspekhi Gerontologii, 2015, Vol. 28, No. 1, pp. 29–36.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, K.L., Soldatov, V.M., Paltseva, E.M. et al. Endothelial signaling molecules in the development of age-associated diseases. Adv Gerontol 5, 121–127 (2015). https://doi.org/10.1134/S2079057015020071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057015020071

Keywords

Navigation