Skip to main content
Log in

Effect of Corona Discharge Plasma and Ozone on the Rate of the Photocatalytic Oxidation of Acetone and Benzene Vapors

  • PHOTO AND ELECTROCATALYSIS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The effect of negative corona discharge plasma on the rate of the photocatalytic oxidation (PCO) of acetone and benzene vapors is explored via an in situ IR spectroscopic study of the dynamics of the change in the composition of a gas–vapor system in a 404-L static reactor. The photocatalyst is Hombifine N titanium dioxide, exposed to the light of UV lamps at a wavelength of λ = 365 nm. The rate of the PCO of substrate vapor is compared to those of oxidation in corona discharge plasma, of dark oxidation by ozone (a byproduct of a discharge), of PCO in the presence of ozone, and of PCO upon simultaneous treatment of the medium by corona discharge plasma. It is shown that the rates of oxidation of different substrates, both in plasma alone and in an ozone-containing atmosphere, are much lower than that of PCO. In a corona discharge, however, the rate of PCO increases along with that of the oxidation in an ozone-containing atmosphere. Considerable accumulation of ozone in a gas mixture upon exposure to a discharge is detected only after 80–90% of the oxidized substrate is consumed. The order of the PCO of acetone with respect to ozone is determined. It is shown that plasma treatment substantially accelerates the PCO of benzene by greatly reducing the deactivation of the photocatalyst observed in the PCO of benzene without plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Okhrana okruzhayushchei sredy v Rossii (Environment Protection in Russia), Laikam, K.E., Ed., Moscow: Rosstat, 2008.

    Google Scholar 

  2. Peral, J. and Ollis, D.F., J. Catal., 1992, vol. 136, no. 2, pp. 554–565.

    Article  Google Scholar 

  3. Herrmann, J.-M., Catal. Today, 1999, vol. 53, no. 1, pp. 115–129.

    Article  CAS  Google Scholar 

  4. Di Paola, A., García-López, E., Marcì, G., and Pal-misano, L., J. Hazard. Mater., 2012, vols. 211–212, pp. 3–29.

  5. Paz, Y., Appl. Catal., B, 2010, vol. 99, nos. 3–4, pp. 448–460.

  6. Lyulyukin, M.N., Kolinko, P.A., Selishchev, D.S., and Kozlova, D.V., Appl. Catal., B, 2018, vol. 220, pp. 386–396.

    Article  CAS  Google Scholar 

  7. Zhao, J. and Yang, X., Build. Environ., 2003, vol. 38, no. 5, pp. 645–654.

    Article  Google Scholar 

  8. Fujishima, A., Rao, T.N., and Tryk, D.A., J. Photochem. Photobiol., C, 2000, vol. 1, no. 1, pp. 1–21.

    Article  CAS  Google Scholar 

  9. Carp, O., Huisman, C.L., and Reller, A., Prog. Solid State Chem., 2004, vol. 32, nos. 1–2, pp. 33–177.

  10. Gaya, U.I. and Abdullah, A.H., J. Photochem. Photobiol., C, 2008, vol. 9, no. 1, pp. 1–12.

    Article  CAS  Google Scholar 

  11. Valeeva, A.A., Kozlova, E.A., Vokhmintsev, A.S., Kamalov, R.V., Dorosheva, I.B., Saraev, A.A., Weinstein, I.A., and Rempel, A.A., Sci. Rep., 2018, vol. 8, no. 1, pp. 1–10.

    Article  CAS  Google Scholar 

  12. Zainullina, V.M., Zhukov, V.P., and Korotin, M.A., J. Photochem. Photobiol., C, 2015, vol. 22, pp. 58–83.

    Article  CAS  Google Scholar 

  13. Mills, A., Le Hunte, S., J. Photochem. Photobiol., A, 1997, vol. 108, no. 1, pp. 1–35.

    Article  CAS  Google Scholar 

  14. Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W., Chem. Rev., 1995, vol. 95, no. 1, pp. 69–96.

    Article  CAS  Google Scholar 

  15. Linsebigler, A.L., Lu, G., and Yates, J.T., Chem. Rev., 1995, vol. 95, no. 3, pp. 735–758.

    Article  CAS  Google Scholar 

  16. Fujishima, A., Zhang, X., and Tryk, D.A., Surf. Sci. Rep., vol. 63, no. 12, pp. 515–582.

  17. Ohtani, B., J. Photochem. Photobiol., C, 2010, vol. 11, no. 4, pp. 157–178.

    Article  CAS  Google Scholar 

  18. Ochiai, T., Ichihashi, E., Nishida, N., Machida, T., Uchid, Y., Hayashi, Y., Morito, Y., and Fujishima, A., Molecules, 2014, vol. 19, no. 11, pp. 17424–17434.

    Article  Google Scholar 

  19. Yamazaki, S., Tanaka, S., and Tsukamoto, H., J. Photochem. Photobiol., A, 1999, vol. 121, no. 1, pp. 55–61.

    Article  CAS  Google Scholar 

  20. Dillert, R., Engel, A., Große, J., Lindnera, P., and Bahnemann, D.W., Phys. Chem. Chem. Phys., 2013, vol. 15, no. 48, pp. 20 876–20 886.

    Article  Google Scholar 

  21. Sahel, K., Elsellami, L., Mirali, I., Dappozze, F., Bouhent, M., and Guillard, C., Appl. Catal., B, 2016, vol. 188, pp. 106–112.

    Article  CAS  Google Scholar 

  22. Wong, C.C. and Chu, W., Environ. Sci. Technol., 2003, vol. 37, no. 10, pp. 2310–2316.

    Article  CAS  Google Scholar 

  23. Méndez-Román, R. and Cardona-Martínez, N., Catal. Today, 1998, vol. 40, no. 4, pp. 353–365.

    Article  Google Scholar 

  24. Sauer, M.L. and Ollis, D.F., J. Catal., 1996, vol. 158, no. 2, pp. 570–582.

    Article  CAS  Google Scholar 

  25. Jeong, M.-G., Park, E.J., Seo, H.O., Kim, K.-D., Kim, Y.D., and Lim, D.C., Appl. Surf. Sci., 2013, vol. 271, pp. 164–170.

    Article  CAS  Google Scholar 

  26. Cao, L., Gao. Z., Suib, S.L., Obee, T.N., Hay, S.O., and Freihaut, J.D., J. Catal., 2000, vol. 196, no. 2, pp. 253–261.

    Article  CAS  Google Scholar 

  27. Marafi, M., Stanislaus, A., and Furimsky, E., in Handbook of Spent Hydroprocessing Catalysts, 2017, ch. 5, pp. 141–220.

    Google Scholar 

  28. Parrino, F., Camera-Roda, G., Loddo, V., Augugliaro, V., and Palmisano, L., Appl. Catal., B, 2015, vol. 178, pp. 37–43.

    Article  CAS  Google Scholar 

  29. Yu, K.P. and Lee, G.W.M., Appl. Catal., B, 2007, vol. 75, nos. 1–2, pp. 29–38.

  30. Zhang, P. and Liu, J., J. Photochem. Photobiol., A, 2004, vol. 167, nos. 2–3, pp. 87–94.

  31. Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices, New York: Signature Publications, 2004, pp. 109–128.

  32. GOST (State Standard) 12.1.005-88: Occupational Safety Standards System. General Sanitary Requirements for Working Zone Air, 1989.

  33. Van Durme, J., Dewulf, J., Sysmans, W., Leys, C., and Van Langenhove, H., Appl. Catal., B, 2007, vol. 74, nos. 1–2, pp. 161–169.

  34. Urashima, K. and Chang, J.-S., IEEE Trans. Dielectr. Electr. Insul., 2000, vol. 7, no. 5, pp. 602–614.

    Article  CAS  Google Scholar 

  35. Abou Saoud, W., Assadi, A.A., Guiza, M., Bouzaza, A., Aboussaoud, W., Ouederni, A., Soutrel, I., Wolbert, D., and Rtimi, S., Appl. Catal., B, 2017, vol. 213, pp. 53–61.

    Article  CAS  Google Scholar 

  36. Lyulyukin, M.N., Besov, A.S., and Vorontsov, A.V., Plasma Chem. Plasma Process., 2011, vol. 31, no. 1, pp. 23–39.

    Article  CAS  Google Scholar 

  37. Kozlov, D. and Besov, A., Appl. Spectrosc., 2011, vol. 65, no. 8, pp. 918–923.

    Article  CAS  Google Scholar 

  38. Bettoni, M., Candori, P., Falcinelli, S., Marmottini, F., Meniconi, S., Rol, C., and Sebastiani, G.V., J. Photochem. Photobiol., A, 2013, vol. 268, pp. 1–6.

    Article  CAS  Google Scholar 

  39. El-Maazawi, M., Finken, A.N., Nair, A.B., and Grassian, V.H., J. Catal., 2000, vol. 191, no. 1, pp. 138–146.

    Article  CAS  Google Scholar 

  40. Szanyi, J. and Kwak, J.H., J. Mol. Catal. A: Chem., 2015, vol. 406, pp. 213–223.

    Article  CAS  Google Scholar 

  41. Selishchev, D.S., Kolobov, N.S., Pershin, A.A., and Kozlov, D.V., Appl. Catal., B, 2017, vol. 200, pp. 503–513.

    Article  CAS  Google Scholar 

  42. Bui, T.D., Kimura, A., Higashida, S., Ikeda, S. and Matsumura, M., Appl. Catal., B, 2011, vol. 107, nos. 1–2, pp. 119–127.

  43. Einaga, H., Futamura, S., and Ibusuki, T., Appl. Catal., B, 2002, vol. 38, no. 3, pp. 215–225.

    Article  CAS  Google Scholar 

  44. Kozlov, D.V., Theor. Exp. Chem., 2014, vol. 50, no. 3, pp. 133–154.

    Article  CAS  Google Scholar 

  45. Satoh, K., Matsuzawa, T., and Itoh, H., Thin Solid Films, 2008, vol. 516, no. 13, pp. 4423–4429.

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed as part of a State Task for the Boreskov Institute of Catalysis, project no. AAAA-A17-117041710087-3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. N. Lyulyukin or D. V. Kozlov.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusachenko, E.A., Lyulyukin, M.N. & Kozlov, D.V. Effect of Corona Discharge Plasma and Ozone on the Rate of the Photocatalytic Oxidation of Acetone and Benzene Vapors. Catal. Ind. 12, 141–147 (2020). https://doi.org/10.1134/S207005042002004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207005042002004X

Keywords:

Navigation