Skip to main content
Log in

Impacts of Climate Warming on Terrestrial Species in the Middle Yenisei Taiga

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

This paper examines the relationship between climate warming and processes occurring in communities and populations of terrestrial small mammals, reptiles, amphibians, and arthropods. The studies have been conducted at Mirnoe Yenisei Ecological Station, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences. The dynamics of climatic changes is determined based on meteorological data collected at seven weather stations located along an almost 1000-km stretch of the Yenisei River valley. The maximum increase in temperature over the period from 1972 to 2020 is registered in the spring months; the farther north the station is located, the stronger these changes are manifested. In the 21st century, the cyclic type of small mammal population dynamics previously observed in the study area is replaced by the fluctuating dynamics type. The abundance of small mammals in the 21st century is lower than it was in the 20th century. Statistically significant decreases in population are noted mostly for species of Siberian origin. New species have been registered in the vicinity of the Yenisei ecological station for the first time. The bank vole (Clethrionomys glareolus) and the taiga tick (Ixodes persulcatus) have appeared on the right bank of the Yenisei River; the common toad (Bufo bufo) has appeared on both river banks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Baskevich, M.I., Bogdanov, A.S., Khlyap, L.A., Malygin, V.M., Oparin, M.L., Sapelnikov, S.F., and Sheftel, B.I., Phylogeny and differentiation of sibling-species Sicista of the group Betulina (Rodentia, Dipodoidea): results of analysis of a fragment of the IRBP gene of nuclear DNA variability, Biol. Bull. (Moscow), 2020, vol. 47, no. 5, pp. 482–489.

    Article  CAS  Google Scholar 

  2. Berteaux, D., Humphries, M.M., Krebs, C.J., Lima, M., McAdam, A.G., Pettorelli, N., Reale, D., Saitoh, T., Tkadlec, E., Weladji, R.B., and Stenseth, N.C., Constraints to projecting the effects of climate change on mammals, Clim. Res., 2006, vol. 32, pp. 151–158.

  3. Bhatt, U.S., Walker, D.A., Raynolds, M.K., et al., Circumpolar Arctic tundra vegetation change is linked to sea ice decline, Earth Interact., 2010, vol. 14, no. 8, pp. 1–20.

  4. Bierman, S.M., Fairbairn, J.P., Petty, S.J., Elston, D.A., Tidhar, D., and Lambin, X., Changes over time in the spatiotemporal dynamics of cyclic populations of field voles (Microtus agrestis L.), Am. Nat., 2006, vol. 167, no. 4, pp. 583–590.

    Article  Google Scholar 

  5. Bol’shakov, V.N., Boikov, V.N., Boikova, F.I., Gashev, N.S., Evdokimov, N.G., and Sharova, L.P., Impact of local extermination on the population and structure of the population of rodents in forest biocenoses, Ekologiya, 1973, no. 6, pp. 57–65.

  6. Bugmyrin, S.V., Nazarova, L.E., Bespyatova, L.A., and Ieshko, E.P., Concerning the problem of the northern limit of Ixodes persulcatus (Acari: Ixodidae) distribution in Karelia, Biol. Bull. (Moscow), 2013, vol. 40, no. 2, pp. 217–220.

    Article  Google Scholar 

  7. Ehrlich, D., Schmidt, N.M., Gauthier, G., Alisauskas, R., Angerbjörn, A., Clark, K., Ecke, F., Eide, N.E., F-ramstad, E., Frandsen, J., Franke, A., Gilg, O., Giroux, M.A., Henttonen, H., Hörnfeldt, B., et al., Documenting lemming population change in the Arctic: Can we detect trends? Ambio, 2020, vol. 49, pp. 801–804.

    Article  Google Scholar 

  8. Epstein, H.E., Raynolds, M.K., Walker, D.A., Bhatt, U.S., Tucker, C.J., and Pinzon, J.E., Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades, Environ. Res. Lett., 2012, vol. 7, no. 1, art. ID 015506.

    Article  Google Scholar 

  9. Gilbert, R.O., Statistical Methods for Environmental Pollution Monitoring, New York: van Nostrand Reinhold, 1987.

  10. Gilg, O., Sittler, B., and Hanski, I., Climate change and cyclic predator-prey population dynamics in the high Arctic, Global Change Biol., 2009, vol. 15, pp. 2634–2652.

    Article  Google Scholar 

  11. Glantz, S.A., Primer of Biostatistics, New York: McGraw-Hill, 1981.

    Google Scholar 

  12. Glushakova, L.I., Korabel’nikov, I.V., and Egorova, Yu.I., Distribution of Ixodes persulcatus in the southern and central regions of the Komi Republic, Med. Parazitol. Parazit. Bolezni, 2011, no. 3, pp. 48–50.

  13. Hammer, Ø., et al., PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4, no. 1, p. 9.

    Google Scholar 

  14. Hörnfeldt, B., Hipkiss, T., and Eklund, U., Fading out of vole and predator cycles? Proc. R. Soc. B, 2005, vol. 272, no. 1576, pp. 2045–2049.

    Article  Google Scholar 

  15. Information retrieval system on the fauna and flora of the Russian nature reserves. http://www.sevin.ru/natreserves/. Cited May 15, 2021.

  16. Ims, R.A., Henden, J.A., and Killengreen, S.T., Collapsing population cycles, Trends Ecol. Evol., 2008, vol. 23, no. 2, pp. 79–86.

    Article  Google Scholar 

  17. Khazova, T.G., Ecological and parasitological characteristics of natural foci of tick-borne encephalitis in Krasnoyarsk krai, Byull. Sib. Otd., Ross. Akad. Med. Nauk, 2007, vol. 4, no. 126, pp. 94–99.

    Google Scholar 

  18. Korenberg, E.I., Recent epidemiology of tick-borne encephalitis an effect of climate change? Adv. Virus Res., 2009, vol. 74, pp. 123–144.

    Article  CAS  Google Scholar 

  19. Korosov, A.V., Spetsial’nye metody biometrii: uchebnoe posobie (Special Biometric Methods: Manual), Petrozavodsk: Petrozavodsk. Gos. Univ., 2007.

  20. Kottsov, V.M., Grishina, E.A., Buzinov, R.V., and Gudkov, A.B., Epidemiological features of tick-borne viral encephalitis and its prevention in Arkhangelsk oblast, Ekol. Chel., 2010, no. 8, pp. 3–8.

  21. Kuz’min, S.L., Zemnovodnye byvshego SSSR (Amphibians of the Former USSR), Moscow: KMK, 2012, 2nd ed.

  22. Kuz’min, S.L., Zemnovodnye byvshego SSSR (Amphibians of the Former USSR), Moscow: KMK, 1999.

  23. Kuzyakin, A.P., Zoogeography of the USSR, Uch. Zap. Mosk. Obl. Pedagog. Inst. im. N.K. Krupskoi, 1962, vol. 59, pp. 3–182.

    Google Scholar 

  24. Lambin, X., Bretagnolle, V., and Yoccoz, N.G., Vole population cycles in northern and southern Europe: is there a need for different explanations for single pattern? J. Anim. Ecol., 2006, vol. 75, pp. 340–349.

    Article  Google Scholar 

  25. Myers, J.H., Population cycles: generalities, exceptions and remaining mysteries, Proc. R. Soc. B, 2018, vol. 285, no. 1875, art. ID 20172841.

  26. Okhotina, M.V. and Kostenko, V.A., Polyethylene film is a prospective material for the manufacture of trapping fences, in Fauna i ekologiya nazemnykh pozvonochnykh (Fauna and Ecology of Terrestrial Vertebrates), Vladivostok: Dal’nevost. Nauchn. Tsentra, Akad. Nauk SSSR, 1974, pp. 193–196.

  27. Oli, M.K., Population cycles in voles and lemmings: state of the science and future directions, Mamm. Rev., 2019, vol. 49, pp. 226–239.

    Article  Google Scholar 

  28. Rossolimo, O.L. and Syroechkovskii, E.E., New data on distribution of the bank vole (Clethrionomys glareolus Schreb.) in Siberia, Nauchn. Dokl. Vyssh. Shk., Biol. Nauki, 1961, no. 2, pp. 61–64.

  29. Saitoh, T., Cazelles, B., Vik, J. O., Viljugrein, H., and Stenseth, N.C., Effects of regime shifts on the population dynamics of the grey-sided vole in Hokkaido, Japan, Clim. Res., 2006, vol. 32, pp. 109–118.

    Article  Google Scholar 

  30. Shadrina, E.G., Nikiforov, O.I., and Ivanova, M.G., Dynamics of population and distribution of ixodic ticks (Ixodidae) in Yakutia, Usp. Sovrem. Biol., 2011, vol. 131, no. 5, pp. 469–473.

    Google Scholar 

  31. Sheftel, B.I., Long-term and seasonal dynamics of shrews in Central Siberia, Ann. Zool. Fenn., 1989, vol. 26, no. 4, pp. 357–369.

    Google Scholar 

  32. Sheftel, B.I., Role of different mechanisms in type determination of population dynamics for small mammals from boreal forestry zone, in Biological Diversity and Nature Conservation: Theory and Practice for Teaching, Spellerberg, I., Slowik, J., Mühlenberg, M., and Dgebuadze, Y.Y., Ed., Moscow: KMK, 2010, ch. 9, pp. 130–143.

    Google Scholar 

  33. Sheftel, B.I., Methods of accounting of small mammals, Russ. J. Ecosyst. Ecol., 2018, vol. 3, no. 3, pp. 1–21.

    Google Scholar 

  34. Sheftel, B.I., Makarova, O.L., Artyushin, I.V., Obolenskaya, E.V., Burskaya, V.O., and Glazov, P.M., Fauna of small mammals of the Bol’shezemel’skaya tundra (Nenets Autonomous Okrug), Vestn. Tomsk. Gos. Univ., Biol., 2020, no. 50, pp. 157–175.

  35. Sherstyukov, B.G., Seasonal features of climate change in 1976–2011, Tr. Vses. Nauchno-Issled. Inst. Gidrometeorol. Inf.–Mirovogo Tsentra Dannykh, 2012, no. 176, pp. 3–15.

  36. Shvarts, E.A., Sheftel, B.I., and Zhukov, M.A., Distribution pattern of the bank vole in the east of the range, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1987, vol. 92, no. 2, pp. 17–26.

    Google Scholar 

  37. Tishkov, A.A., Belonovskaya, E.A., Vaisfel’d, M.A., Glazov, P.M., Krenke, A.N., Jr., Morozova, O.V., Pokrovskaya, I.V., Tsarevskaya, N.G., and Tertitskii, G.M., “Greening” of landscapes in Arctic as the consequences of modern climatogenic and anthropogenic trends in vegetation, Izv. Russ. Geogr. O-va, 2016, vol. 148, no. 3, pp. 14–24.

    Google Scholar 

  38. Vapalahti, O., Mustonen, J., Lundkvist, Å., Henttonen, H., Plyusnin, A., and Vaheri, A., Hantavirus infections in Europe, Lancet Infect. Dis., 2003, vol. 3, no. 10, pp. 653–661.

    Article  Google Scholar 

  39. WMO Guidelines on the Calculation of Climate Normals, Geneva: World Meteorol. Org., 2017, no. 1203.

  40. Yakushov, V.D. and Sheftel, B.I., Is there a relationship between the Chitty effect and the types of population dynamics? Dokl. Biol. Sci., 2020, vol. 492, no. 1, pp. 89–92.

    Article  CAS  Google Scholar 

  41. Yamborko, A.V., Tret’yakov, K.A., and Murav’eva, V.P., First finds of Ixodes persulcatus (Acarina, Ixodidae) in Magadan oblast, Zool. Zh., 2015, vol. 94, no. 5, pp. 499–504.

    Google Scholar 

  42. Zakharov, V.M., Sheftel, B.I., and Dmitriev, S.G., Climate change and population dynamics: possible consequences (case study of small mammals in Central Siberia), Usp. Sovrem Biol., 2011, vol. 131, no. 5, pp. 435–439.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Sheftel.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by L. Emeliyanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheftel, B.I., Yakushov, V.D. Impacts of Climate Warming on Terrestrial Species in the Middle Yenisei Taiga. Contemp. Probl. Ecol. 15, 1–10 (2022). https://doi.org/10.1134/S1995425522010073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425522010073

Keywords:

Navigation