Skip to main content
Log in

The effect of ionic strength on spectral properties of quantum dots and aluminum phthalocyanine complexes

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The effect of ionic strength on spectral properties of negatively charged semiconductor (CdSe/ZnS) nanocrystals (quantum dots, QDs) and polycationic aluminum phthalocyanines (PCs) is considered. A QD/PC complex, formed via self-assembly, remains stable throughout a wide range of ionic strength values of a solution and [PC]/[QD] concentration ratio. The efficiency of nonradiative energy transfer from QDs to PCs rises with an increase in the ionic strength of solution. The fluorescence amplification factor of PC reduces with an increase in number of PC molecules in a complex with a quantum dot, reaching negative values at high [PC]/[QD] ratios. This is probably due to the decrease in the effect of energy migration on the total PC fluorescence upon its own significant absorption ability of a large number of acceptors. These effects are of interest to develop selection principles of components for hybrid complexes stabilized with electrostatic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Spikes, “Phthalocyanines as photosensitizers in biological systems and for the photodynamic therapy of tumors,” Photochem. Photobiol. 43, 691–699 (1986).

    Article  Google Scholar 

  2. F. Lv, B. Cao, Y. Cui, and T. Liu, “Zinc phthalocyanine labelled polyethylene glycol: preparation, characterization, interaction with bovine serum albumin and near infrared fluorescence imaging in vivo,” Molecules 17, 6348–6361 (2012).

    Article  Google Scholar 

  3. R. Bonnett, “Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy,” Chem. Soc. Rev. 24, 19–33 (1995).

    Article  Google Scholar 

  4. M. G. Strakhovskaya, Yu. N. Antonenko, A. A. Pashkovskaya, E. A. Kotova, V. Kireev, V. G. Zhukhovitsky, N. A. Kuznetsova, O. A. Yuzhakova, V. M. Negrimovsky, and A. B. Rubin, “Electrostatic binding of substituted metal phthalocyanines to enterobacterial cells: its role in photodynamic inactivation,” Biochemistry (Moscow) 74, 1305 (2009).

    Article  Google Scholar 

  5. P. K. Selbo, A. Hogset, L. Prasmickaite, and K. Berg, “Photochemical internalisation: a novel drug delivery system,” Tumour Biol. 23, 103–112 (2002).

    Article  Google Scholar 

  6. H. Ali and J. E. van Lier, “Metal complexes as photoand radiosensitizers,” Chem. Rev. 99, 2379–2450 (1999).

    Article  Google Scholar 

  7. D. A. Makarov, N. A. Kuznetsova, O. A. Yuzhakova, L. P. Savina, O. L. Kaliya, E. A. Luk’yanets, V. M. Negrimovskii, and M. G. Strakhovskaya, “Effects of the degree of substitution on the physicochemical properties and photodynamic activity of zinc and aluminum phthalocyanine polycations,” Russ. J. Phys. Chem. A 83, 1044 (2009).

    Article  Google Scholar 

  8. T. Slastnikova, A. Rosenkranz, M. Zalutsky, and A. Sobolev, “Modular nanotransporters for targeted intracellular delivery of drugs: folate receptors as potential targets,” Curr. Pharmaceut. Des. 21, 1227–1238 (2009).

    Article  Google Scholar 

  9. L. A. Muehlmann, B. C. Ma, J. P. Longo, M. de F. Almeida Santos, and R. B. Azevedo, “Aluminum-phthalocyanine chloride associated to poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as a new third-generation photosensitizer for anticancer photodynamic therapy,” Int. J. Nanomed. 9, 1199–1213 (2014).

    Article  Google Scholar 

  10. Y. Y. Huang, S. K. Sharma, R. Yin, T. Agrawal, L. Y. Chiang, and M. R. Hamblin, “Functionalized fullerenes in photodynamic therapy,” J. Biomed. Nanotechnol. 10, 1918–1936 (2014).

    Article  Google Scholar 

  11. D. A. Tekdas, M. Durmus, H. Yanika, and V. Ahsena, “Photodynamic therapy potential of thiol-stabilized CdTe quantum dot-group 3A phthalocyanine conjugates (QD-Pc),” Spectrochim. Acta, Part A 93, 313–320 (2012).

    Article  Google Scholar 

  12. A. Skripka, J. Valanciunaite, G. Dauderis, V. Poderys, R. Kubiliute, and R. Rotomskisa, “Two-photon excited quantum dots as energy donors for photosensitizer chlorin e6,” J. Biomed. Opt. 18, 078002 (2013).

    Article  Google Scholar 

  13. L. Li, J. F. Zhao, N. Won, H. Jin, S. Kim, and J. Y. Chen, “Quantum dot aluminum phthalocyanine conjugates perform photodynamic reactions to kill cancer cells via fluorescence resonance energy transfer (FRET),” Nanoscale Res. Lett. 7, 386 (2012).

    Article  Google Scholar 

  14. O. S. Viana, M. S. Ribeiro, A. C. Rodas, J. S. Reboucas, A. Fontes, and B. S. Santos, “Comparative study on the efficiency of the photodynamic inactivation of candida albicans using CdTe quantum dots, Zn(II) porphyrin and their conjugates as photosensitizers,” Molecules 20, 8893–8912 (2015).

    Article  Google Scholar 

  15. S. D’Souza, E. Antunes, and T. Nyokong, “Synthesis and photophysical studies of cdTe quantum dot-monosubstituted zinc phthalocyanine conjugates,” Inorg. Chim. Acta 367, 173–181 (2011).

    Article  Google Scholar 

  16. A. C. S. Samia, X. Chen, and C. Burda, “Semiconductor quantum dots for photodynamic therapy,” J. Am. Chem. Soc. 125, 15736–15737 (2003).

    Article  Google Scholar 

  17. S. B. Rizvi, S. Rouhi, S. Taniguchi, S. Y. Yang, M. Green, M. Keshtgar, and A. M. Seifalian, “Nearinfrared quantum dots for HER2 localization and imaging of cancer cells,” Int. J. Nanomed. 9, 1323–1237 (2014).

    Google Scholar 

  18. S. Kamila, C. McEwan, D. Costley, J. Atchison, Y. Sheng, G. R. Hamilton, C. Fowley, and J. F. Callan, “Diagnostic and therapeutic applications of quantum dots in nanomedicine,” Top. Curr. Chem. 370, 203–224 (2016).

    Article  Google Scholar 

  19. V. Biju, S. Mundayoor, R. V. Omkumar, A. Anas, and M. Ishikawa, “Bioconjugated quantum dots for cancer research: present status, prospects and remaining issues,” Biotechnol. Adv. 28, 199–213 (2010).

    Article  Google Scholar 

  20. H. Hafian, A. Sukhanova, M. Turini, P. Chames, D.Baty, M. Pluot, J. H. Cohen, I. Nabiev, and J. M. Millot, “Multiphoton imaging of tumor biomarkers with conjugates of single-domain antibodies and quantum dots,” Nanomedicine 10, 1701–1709 (2014).

    Google Scholar 

  21. B. R. Liu, H. H. Chen, M. H. Chan, Y. W. Huang, R. S. Aronstam, and H. J. Lee, “Three arginine-rich cell-penetrating peptides facilitate cellular internalization of red-emitting quantum dots,” J. Nanosci. Nanotechnol. 15, 2067–2078 (2015).

    Article  Google Scholar 

  22. A. A. Karpulevich, E. G. Maksimov, N. N. Sluchanko, A. N. Vasiliev, and V. Z. Paschenko, “Highly efficient energy transfer from quantum dot to allophycocyanin in hybrid structures,” J. Photochem. Photobiol. B: Biol. 160, 96–101 (2016).

    Article  Google Scholar 

  23. F. J. Schmitt, E. G. Maksimov, P. Hätti, J. Weißenborn, V. Jeyasangar, A. P. Razjivin, V. Z. Paschenko, and G. Renger, “Coupling of different isolated photosynthetic light harvesting complexes and CdSe/ZnS nanocrystals via Förster resonance energy transfer,” Biochim. Biophys. Acta, Bioenerg. 1817, 1461–1470 (2012).

    Article  Google Scholar 

  24. T. Nyokong and E. Antunes, “Photochemical and photophysical properties of metallophthalocyanines,” in Handbook of Porphyrin Science, Ed. by K. M. Kadish, K. M. Smith, and R. Guilard (World Scientific, Singapore, 2010), Vol. 7, pp. 247–357.

    Google Scholar 

  25. E. G. Maksimov, D. A. Gvozdev, M. G. Strakhovskaya, and V. Z. Pashchenko, “Hybrid structures of polycationic aluminum phthalocyanines and quantum dots,” Biochemistry (Moscow) 80, 323 (2015).

    Article  Google Scholar 

  26. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).

    Article  Google Scholar 

  27. R. F. Kubin and A. N. Fletcher, “Fluorescence quantum yields of some rhodamine dyes,” J. Lumin. 27, 455–462 (1982).

    Article  Google Scholar 

  28. I. E. Borissevitch, “More about the inner filter effect: corrections of Stern-Volmer fluorescence quenching constants are necessary at very low optical absorption of the quencher,” J. Lumin. 81, 219–224 (1999).

    Article  Google Scholar 

  29. PML'16'C, 16 Channel Detector Head for Timecorrelated Single Photon Counting, User Handbook (Becker and Hickl, Berlin, 2006). http://www.becker_hickl.de/pdf/ pml16c21.pdf.

  30. L. P. Aggarwal and I. E. Borissevitch, “On the dynamics of the TPP4 aggregation in aqueous solutions: successive formation of H and J aggregates,” Spectrochim. Acta A: Mol. Biomol. Spectrosc. 63, 227–233 (2006).

    Article  Google Scholar 

  31. H. L. Ma and W. J. Jin, “Studies on the effects of metal ions and counter anions on the aggregate behaviors of meso-tetrakis(p-sulfonatophenyl)porphyrin by absorption and fluorescence spectroscopy,” Spectrochim. Acta A: Mol. Biomol. Spectrosc. 71, 153–160 (2008).

    Article  Google Scholar 

  32. A. Cordones and S. Leone, “Mechanisms for charge trapping in single semiconductor nanocrystals probed by fluorescence blinking,” Chem. Soc. Rev. 42, 3209–3221 (2013).

    Article  Google Scholar 

  33. M. Grabolle, J. Ziegler, A. Merkulov, T. Nann, and U. Resch-Genger, “Stability and fluorescence quantum yield of CdSe–ZnS quantum dots-influence of the thickness of the ZnS shell,” Ann. N. Y. Acad. Sci. 1130, 235–241 (2008).

    Article  Google Scholar 

  34. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, New York, 2006).

    Book  Google Scholar 

  35. T. Tao, “Time-dependent fluorescence depolarization and brownian rotational diffusion coefficients of macromolecules,” Biopolymers 8, 609–632 (1969).

    Article  Google Scholar 

  36. K. Kadish and R. Guilard, The Porphyrin Handbook, Vol. 17: Phthalocyanines Properties and Materials (Academic, New Yor, 2002).

    Google Scholar 

  37. J. M. Tsay, M. Trzoss, L. Shi, X. Kong, M. Selke, M. E. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).

    Article  Google Scholar 

  38. A. Rakovich, T. Rakovich, V. Kelly, V. Lesnyak, A. Eychmuller, Y. P. Rakovich, and J. F. Donegan, “Photosensitizer methylene blue-semiconductor nanocrystals hybrid system for photodynamic therapy,” J. Nanosci. Nanotechnol. 10, 2656–2662 (2010).

    Article  Google Scholar 

  39. X. Zhang, Z. Liu, L. Ma, M. Hossu, and W. Chen, “Interaction of porphyrins with cdTe quantum dots,” Nanotechnology 22, 195501 (2011).

    Article  Google Scholar 

  40. Z. Petrásek and D. Phillips, “A time-resolved study of concentration quenching of disulfonated aluminium phthalocyanine fluorescence,” Photochem. Photobiol. Sci. 2, 236–244 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Gvozdev.

Additional information

Original Russian Text © D.A. Gvozdev, E.G. Maksimov, M.G. Strakhovskaya, M.V. Ivanov, V.Z. Paschenko, A.B. Rubin, 2017, published in Rossiiskie Nanotekhnologii, 2017, Vol. 12, Nos. 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gvozdev, D.A., Maksimov, E.G., Strakhovskaya, M.G. et al. The effect of ionic strength on spectral properties of quantum dots and aluminum phthalocyanine complexes. Nanotechnol Russia 12, 73–85 (2017). https://doi.org/10.1134/S1995078017010050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078017010050

Navigation