Skip to main content
Log in

Porphyrin-fullerene nanoparticles for treatment of hypoxic cardiopathies

  • Experiment
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

In this study, low-toxic fullerene-based nanocationite particles (adducts of porphyrin with cyclohexyl fullerene C60) designated for targeted delivery of the paramagnetic stable magnesium isotope to heart muscle is reported for the first time; these particles exhibit a sharp clinical effect of 80% recovery from tissue hypoxia in less than 24 h after a single injection (0.03–0.1 LD50). This therapy is based on a novel principle: 25Mg2+ released by nanoparticles due to the magnetic isotopic effect selectively stimulates the additional production of ATP in oxygen-depleted cells. These cationite “smart nanoparticles,” which possess a membranotropic effect, release hyperactivating paramagnetic cations only in response to a metabolic acidic shift. The final positive changes in the energy metabolism of heart muscle cells are capable of helping to prevent and/or treat local hypoxia of heart muscle, and therefore, protect heart muscle from serious damage in a wide variety of clinical cases of hypoxia, including cardiotoxic side effects of doxorubicin and 1-methylnicotineamide. Both the pharmacokinetics and pharmacodynamics of the proposed drug allow safe and efficient administration in single-and multi-injection (acute and chronic) therapeutic schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sarkar, S. M. Rezayat, A. L. Buchachenko, et al., “New Water Soluble Porphylleren Compounds,” EU Patent No. 07 009 882.7/EP07 009 882, Munich, Germany (2007).

  2. S. Sarkar, S. M. Rezayat, A. L. Buchachenko, et al., “Use of a Magnesium Isotope for Treating Hypoxia and a Medicament Comprising the Same,” EU Patent No. 07009881.9/EP07 009 881, Munich, Germany (2007).

  3. K. B. Wallace and A. A. Starkov, “Mitochondrial Targets of Drug Toxicity,” Annu. Rev. Pharmacol. Toxicol. 40, 353–388 (2000).

    Article  CAS  Google Scholar 

  4. A. K. Souid, K. A. Tacka, K. A. Galvan, and H. S. Penefsky, “Immediate Effects of Anticancer Drugs on Mitochondrial Oxygen Consumption,” Biochem. Pharmacol. 66, 977–987 (2003).

    Article  CAS  Google Scholar 

  5. K. B. Wallace, “Doxorubicin-Induced Cardiac Mitochondriopathy,” Pharmacol. Toxicol. (Oxford, UK) 93, 105–115 (2003).

    CAS  Google Scholar 

  6. B. Alberts, A. Johnson, J. Lewis, et al., Molecular Biology of the Cell (Garland Science, New York, 2002).

    Google Scholar 

  7. T. Waugh and H. Telashima, Mitochondria (Research Triangle, Raleigh-Durham, NC, United States, 2004).

    Google Scholar 

  8. A. L. Buchachenko, D. A. Kuznetsov, S. E. Arkhanglesky, et al., “Spin Biochemistry: Magnetic, 24Mg-25Mg-26Mg Isotope Effect in Mitochondrial ADP Phosphorylation,” Cell Biochem. Biophys. 43, 243–252 (2005).

    Article  CAS  Google Scholar 

  9. A. L. Buchachenko, D. A. Kuznetsov, S. E. Arkhangelsky, et al., “Spin Biochemistry: Intramitochondrial Nucleotide Phosphorylation Is a Magnesium Nuclear Spin Controlled Process,” Mitochondrion 5, 67–70 (2005).

    Article  CAS  Google Scholar 

  10. A. L. Buchachenko, D. A. Kouznetsov, M. A. Orlova, and A. A. Markarian, “Magnetic Isotope Effect of Magnesium in Phosphoglycerate Kinase Phosphorylation,” Proc. Natl. Acad. Sci. USA 102, 10 793–10 797 (2005).

    Article  CAS  Google Scholar 

  11. A. L. Buchachenko, D. A. Kuznetsov, N. N. Breslavskaya, and M. A. Orlova, “Magnesium Isotope Effects in Enzymatic Phophorylation,” J. Phys. Chem. B 112, 2107–2114 (2008).

    Article  CAS  Google Scholar 

  12. K. Kano, “Molecular Complexes of Water-Soluble Porphyrins,” J. Porphyrins Phthalocyanines 8, 148–155 (2004).

    CAS  Google Scholar 

  13. R. Hudson, C. Mallroy, S. Darnell, and K. M. Smith, “Porphyrin Conjugates in Photoimmunotherapy,” Br. J. Cancer 93, 1442–1450 (2006).

    Google Scholar 

  14. R. Pawar, A. Avramoff, and A. J. Domb, “Nanoparticles for Crossing Biological Membranes,” in Biological and Pharmacological Nanomaterials, Ed. by C. S. S. R. Kumar (Wiley, Weinheim, LA, United States, 2007).

    Google Scholar 

  15. D. D. Tyler and J. Gonze, “The Preparation of Heart Mitochondria from Laboratory Animals,” Methods Enzymol. 10, 75–122 (1967).

    Article  CAS  Google Scholar 

  16. M. Gergely and I. Lakatos, Molecular and Cellular Cardiology (Alba Regia, Budapest, 1999).

    Google Scholar 

  17. R. Mahatoo, “Biological Membranes and Barriers,” in Biomaterials for Delivery and Targeting of Proteins and Nucleic Acids, Ed. by I. Telashima and J. A. Waugh (CRC, New York, 2005), pp. 241–260.

    Google Scholar 

  18. M. M. Bradford, “An Improved Colorimetric Technique for Protein Measurement,” Anal. Biochem. 72, 348–354 (1976).

    Article  Google Scholar 

  19. A. P. Gladyshev, R. R. Asmolov, G. V. Trepova, et al., “Autoradiography of the 59Fe-Labeled Organelle Supplemented with an Electron Microscopic Track Study,” Bull. Exp. Biol. Med. 58, 668–674 (1997).

    Google Scholar 

  20. L. B. Piotrovsky and O. I. Kiselyov, Fullerenes in Biology: On the Way towards Nanomedicine (Rostok, St. Petersburg, 2006).

    Google Scholar 

  21. The Nanofinder S16E: Laser Confocal Microscopy-Raman Spectroscopy Unit: Technical Manual (Nanofinder, Grodno, Belarus’, 2006).

  22. D. A. Kuznetsov, A. V. Govorkov, N. V. Zavijalov, et al., “Fast Estimation of ATP/ADP Ratio as a Special Step in Pharmacological and Toxicological Studies Using the Cell-Free Translation System,” J. Biochem. Biophys. Methods 13, 53–56 (1986).

    Article  CAS  Google Scholar 

  23. L. W. Lo, C. J. Koch, and D. F. Wilson, “Calibration of Oxygen-Dependent Quenching of the Phosphorescence of Pd-meso-tetra-(4-carboxyphenyl)porphyne: A Phosphor with General Application for Measuring Oxygen Concentration in Biological Systems,” Anal. Biochem. 236, 153–160 (1996).

    Article  CAS  Google Scholar 

  24. S. A. Vinogradov and D. F. Wilson, “Metallotetrabenzoporphyrins: New Phosphorescent Probes for Oxygen Measurements,” J. Chem. Soc. Perkin Trans. 21, No. 1, 103–111 (1995).

    Google Scholar 

  25. Radioimmunoassays and Related Analytical Techniques: Technical Manual by Bio-Rad (Bio-Rad, Durham, NC, United States, 2006).

  26. H. Bielka, K. Lottmeyer, K. Roetzsch, et al., “The Human Blood Cells Biomass in a Drug Metabolites Uptake Screening,” Clin. Exp. Pathol. 16, 444–458 (1996).

    Google Scholar 

  27. L. Z. Benet and R. L. Galeazzi, “Determination of the Steady-State Volume Drug Distribution,” J. Pharmacol. Sci. 68, 1071–1074 (1979).

    Article  CAS  Google Scholar 

  28. D. J. Morgan and R. A. Smallwood, “Clinical Significance of Pharmacokinetic Models of Hepatic Elimination,” Clin. Pharmacokinet. 18, 61–76 (1990).

    Article  CAS  Google Scholar 

  29. D. J. Birkett, Pharmacokinetics Made Easy (McGraw Hill, Melbourne, 1998).

    Google Scholar 

  30. G. Andrievsky, V. Klochkov, and L. Derevyanenko, “Is C60-Fullerene Molecule Toxic?,” Fullerenes, Nanotubes, Carbon Nanostruct. 13, 363–376 (2005).

    Article  CAS  Google Scholar 

  31. M. E. Milanesio, M. G. Alvarez, V. Rivarola, et al., “Porphyrin-Fullerene C60 Dyads with High Ability to Form Photo-Induced Charge-Separated State As Novel Sensitizers for Photodynamic Therapy,” Photochem. Photobiol. 81, 891–897 (2000).

    Article  Google Scholar 

  32. Y.-L. Lin, H.-Y. Lei, Yu.-Ye. Wen, et al., “Light-Independent Inactivation of Dengue-2 Virus by Carboxyfullerene C3 Isomer,” Virology 275, 258–262 (2000).

    Article  CAS  Google Scholar 

  33. T. Mashino, K. Okuda, T. Hirota, et al., Inhibition of E. coli Grow by Fullerene Derivatives and Inhibition Mechanism, Bioorg. Med. Chem. Lett. 9, 2959–2962 (1999).

    Article  CAS  Google Scholar 

  34. M. Suarez, Y. Verdecia, B. Illescas, et al., “Synthesis and Study of Novel Fulleropyrrolidines Bearing Biologically Active 1,4-Dyhydropyridines,” Tetrahedron 59 9179–9186 (2003).

    Article  CAS  Google Scholar 

  35. D. Pantarotto, N. Tagmatarchis, A. Bianco, and M. Prato, “Synthesis and Biological Properties of Fullerene-Containing Amino Acids and Peptides,” Mini-Rev. Med. Chem. 4, 805–814 (2004).

    CAS  Google Scholar 

  36. Y. Tabata and Y. Ikada, “Biological Functions of Fullerenes,” Pure Appl. Chem. 71, 2047–2053 (1999).

    Article  CAS  Google Scholar 

  37. T. Baierl and A. Siedel, “ In vitro Effects of Fullerene Black on Immunofunctions of Macrophages,” Fullerene Sci. Technol. 4, 1073–1085 (1996).

    CAS  Google Scholar 

  38. M. Mellul, “Cosmetic Make-up Composition Containing a Fullerene or Mixture of Fullerenes,” US Patent No. 561,202 (1997).

  39. J. E. Leone and P. V. Narayanan, “Catheter System Having Fullerenes and Method,” US Patent No. 6 468 244 (2002).

  40. L. Schmitt, M. Ludwig, H. E. Gaub, and R. Tampe, “A Metal-Chelating Microscopy Tip As a New Toolbox for Single-Molecule Experiments by Atomic Force Microscopy,” Biophys. J. 78, 3275–3285 (2000).

    Article  CAS  Google Scholar 

  41. D. Fotiadis, S. Scheuring, S. A. Müller, et al., “Imaging and Manipulation of Biological Structures with the AFM,” Micron 33, 385–397 (2002).

    Article  CAS  Google Scholar 

  42. M. N. V. R. Kumar, “Nano and Microparticles As Controlled Drug Delivery Devices,” J. Pharm. Pharm. Sci. 3 (2), 234–258 (2000).

    Google Scholar 

  43. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “Application of Magnetic Nanoparticles in Biomedicine,” J. Phys. D: Appl. Phys. 36, R167–R181 (2003).

    Article  CAS  Google Scholar 

  44. T. Kubik, K. Bogunia, and M. Sugisaka, “Nanotechnology on Duty in Medicinal Applications,” Curr. Pharm. Biotechnol. 6, 17–33 (2005).

    CAS  Google Scholar 

  45. S. C. Gad, Drug Safety Evaluation (Wiley, New York, 2002).

    Google Scholar 

  46. F. H. Hoft, I. B. Hohlfeld, and O. V. Salata, “Nanoparticles: Known and Unknown Risks,” J. Nanobiotechnol. 2, 12–24 (2004).

    Article  CAS  Google Scholar 

  47. R. Hong, N. O. Fisher, A. Verma, et al., “Control of Protein Structure and Function through Surface Recognition by Scaffolds,” J. Am. Chem. Soc. 126, 739–143 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Amirshahi.

Additional information

Original Russian Text © N. Amirshahi, R.N. Alyautdin, S. Sarkar, S.M. Rezayat, M.A. Orlova, I.V. Trushkov, A.L. Buchachenko, D.A. Kuznetsov, 2008, published in Rossiiskie nanotekhnologii, 2008, Vol. 3, Nos. 9–10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amirshahi, N., Alyautdin, R.N., Sarkar, S. et al. Porphyrin-fullerene nanoparticles for treatment of hypoxic cardiopathies. Nanotechnol Russia 3, 611–621 (2008). https://doi.org/10.1134/S1995078008090115

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078008090115

Keywords

Navigation