Skip to main content
Log in

Spontaneous Reactivation of OPC-Inhibited BChE Mutants: Modeling of Mechanisms

  • CHEMICAL PHYSICS OF BIOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The mechanism of the reactivation reaction of the double mutant butyrylcholinesterase (BChE) double mutantAsn322Glu/Glu325Gly, inhibited by the organophosphorus compound (OPC) echothiophat is studied by molecular modeling methods. The ability of this mutant to spontaneously reactivate itself was previously shown experimentally. The energy profile of the reaction path calculated by the method of quantum mechanics/molecular mechanics (QM/MM) confirms that such a mechanism is possible. Molecular dynamics calculations with QM/MM potentials are used to investigate the proton transfer pathways and determine the protonated state of the glutamic acids in the active site of the double mutant. Possible ways of increasing its conformational stability are investigated by the methods of classical molecular dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. F. Worek, H. Thiermann, and T. Wille, Toxicol. Lett. 244, 143 (2016). https://doi.org/10.1016/j.toxlet.2015.07.012

    Article  CAS  PubMed  Google Scholar 

  2. P. Masson and S. V. Lushchekina, Chem.-Biol. Interact. 259, 319 (2016). https://doi.org/10.1016/j.cbi.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  3. P. Masson and F. Nachon, J. Neurochem. 142 (Suppl. 2), 26 (2017). https://doi.org/10.1111/jnc.14026

    Article  CAS  PubMed  Google Scholar 

  4. M. Goldsmith and Y. Ashani, Chem.-Biol. Interact. 292, 50 (2018). https://doi.org/10.1016/j.cbi.2018.07.006

    Article  CAS  PubMed  Google Scholar 

  5. P. Masson and S. Luschekina, in Handbook of Toxicology of Chemical Warfare Agents, Ed. by R. D. Gupta (Academic, London, 2020), p. 1199.

    Google Scholar 

  6. I. Lyagin and E. Efremenko, Int. J. Mol. Sci. 22 (2021). https://doi.org/10.3390/ijms22041761

  7. S. V. Lushchekina, L. M. Schopfer, B. L. Grigorenko, et al., Front. Pharmacol. 9, 211 (2018). https://doi.org/10.3389/fphar.2018.00211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Lushchekina and P. Masson, Toxicology 409, 91 (2018). https://doi.org/10.1016/j.tox.2018.07.020

    Article  CAS  PubMed  Google Scholar 

  9. B. L. Grigorenko, D. A. Novichkova, S. V. Lushchekina, et al., Chem.-Biol. Interact. 306, 138 (2019). https://doi.org/10.1016/j.cbi.2019.04.019

    Article  CAS  PubMed  Google Scholar 

  10. Y. Nicolet, O. Lockridge, P. Masson, et al., J. Biol. Chem. 278, 41141 (2003). https://doi.org/10.1074/jbc.M210241200

    Article  CAS  PubMed  Google Scholar 

  11. B. L. Grigorenko, M. G. Khrenova, A. M. Kulakova, and A. V. Nemukhin, Russ. J. Phys. Chem. B 14, 457 (2020). https://doi.org/10.1134/S1990793120030161

    Article  CAS  Google Scholar 

  12. J. C. Phillips, R. Braun, W. Wang, et al., J. Comput. Chem. 26, 1781 (2005). https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. R. B. Best, X. Zhu, J. Shim, et al., J. Chem. Theor. Comp. 8, 3257 (2012). https://doi.org/10.1021/ct300400x

    Article  CAS  Google Scholar 

  14. I. V. Polyakov, B. L. Grigorenko, and A. V. Nemukhin, Russ. J. Phys. Chem. B 15, 103 (2021). https://doi.org/10.1134/S1990793121010255

    Article  CAS  Google Scholar 

  15. M. Valiev, E. J. Bylaska, N. Govind, et al., Comput. Phys. Commun. 181, 1477 (2010). https://doi.org/10.1016/j.cpc.2010.04.018

    Article  CAS  Google Scholar 

  16. D. A. Case, T. E. Cheatham III, T. Darden, et al., J. Comput. Chem. 26, 1668 (2005). https://doi.org/10.1002/jcc.20290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. G. Khrenova, V. G. Tsirelson, and A. V. Nemukhin, Phys. Chem. Chem. Phys. 22, 19069 (2020). https://doi.org/10.1039/d0cp03560b

    Article  CAS  PubMed  Google Scholar 

  18. W. D. Kumler and J. J. Eiler, J. Am. Chem. Soc. 65, 2355 (1943). https://doi.org/10.1021/ja01252a028

    Article  CAS  Google Scholar 

  19. M. Amitay and A. Shurki, Proteins 77, 370 (2009). https://doi.org/10.1002/prot.22442

    Article  CAS  PubMed  Google Scholar 

  20. M. Eslami, S. M. Hashemianzadeh, K. Bagherzadeh, et al., J. Biomol. Struct. Dyn. 34, 855 (2016). https://doi.org/10.1080/07391102.2015.1057526

    Article  CAS  PubMed  Google Scholar 

  21. K. N. Allen and D. Dunaway-Mariano, Trends Biochem. Sci. 29, 495 (2004). https://doi.org/10.1016/j.tibs.2004.07.008

    Article  CAS  PubMed  Google Scholar 

  22. H. Delacour, S. Lushchekina, I. Mabboux, et al., PLoS One 9, e101552 (2014). https://doi.org/10.1371/journal.pone.0101552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 19-03-00076), using the equipment of the Interdepartmental Supercomputer Center of the Russian Academy of Sciences and the Center for Shared Use of UltraHigh Performance Computing Resources of Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nemukhin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lushchekina, S.V., Nemukhin, A.V., Polyakov, I.V. et al. Spontaneous Reactivation of OPC-Inhibited BChE Mutants: Modeling of Mechanisms. Russ. J. Phys. Chem. B 16, 103–108 (2022). https://doi.org/10.1134/S1990793122010237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122010237

Keywords:

Navigation