Skip to main content
Log in

Effect of Mechanical Pressure on the Recrystallization of Zinc Oxide in a Water Fluid Medium under Cold Sintering

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The effect of mechanical pressure on the change in the crystal size distribution (CSD) during the treatment of zinc oxide in a water medium in the presence of an activating additive, such as zinc acetate or ammonium chloride, is studied by analyzing the images taken on a scanning electron microscope (SEM). The results of ZnO treatment at temperatures of 220–296°C in ceramic cold sintering processes and under similar conditions without mechanical pressure in an autoclave are compared. It is concluded that the additives to the reaction medium have an effect of the rate of exchange by water molecules between the water medium and the water bonded in the ZnO structure and activate the solid-phase mobility and redistribution of mass between crystals. Mechanical pressure intensifies the solid-phase mobility activation effect and leads to an increase in the probability of crystal coalescence and the size of a ceramic grain under cold sintering. Surface spreading is predominant in the process of treatment in water fluid medium without mechanical pressure. A mechanism is proposed for the effect of a water medium on mass transfer and the change of dispersion composition during the recrystallization of ZnO powder with the formation of new finely dispersed crystals, which differ from initial powder crystals in their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. Yu. D. Ivakin, M. N. Danchevskaya, and G. P. Muravieva, Russ. J. Phys. Chem. B 13, 1189 (2019). https://doi.org/10.1134/S199079311907011X

    Article  CAS  Google Scholar 

  2. SU Patent No. 1560644 A1 (1987). https://yandex.ru/patents/doc/SU1560644A1_19900430.

  3. M. Wang, Y. Zhou, Y. Zhang, S. H. Hahn, and E. J. Kim, Cryst. Eng. Commun. 13, 6024 (2011). https://doi.org/10.1039/c1ce05502j

    Article  CAS  Google Scholar 

  4. S. Mukhopadhyay, P. P. Das, S. Maity, P. Ghosh, and P. S. Devi, Appl. Catal. B: Environ. 165, 128 (2015). https://doi.org/10.1016/j.apcatb.2014.09.045

    Article  CAS  Google Scholar 

  5. Yu. D. Ivakin and M. N. Danchevskaya, Russ. J. Phys. Chem. B 12, 1205 (2018). https://doi.org/10.1134/S1990793118080055

    Article  CAS  Google Scholar 

  6. Yu. D. Ivakin, M. N. Danchevskaya, A. A. Kholodkova, G. P. Muravieva, and V. V. Rybalchenko, J. Supercrit. Fluids 159, 104771 (2020). https://doi.org/10.1016/j.supflu.2020.104771

    Article  CAS  Google Scholar 

  7. Yu. D. Ivakin, M. N. Danchevskaya, O. G. Ovchinnikova, G. P. Muravieva, and V. A. Kreisberg, Russ. J. Phys. Chem. A 3, 1019 (2009). https://doi.org/10.1134/S199079310907001X

    Article  Google Scholar 

  8. Yu. D. Ivakin, M. N. Danchevskaya, and G. P. Muravieva, Moscow Univ. Chem. Bull. 52, 183 (2011).

    CAS  Google Scholar 

  9. R. Chaim, M. Levin, A. Shlayer, and C. Estournes, Adv. Appl. Ceram. 107, 159 (2008). https://doi.org/10.1179/174367508X297812

    Article  CAS  Google Scholar 

  10. A. A. Kholodkova, M. N. Danchevskaya, Yu. D. Ivakin, A. D. Smirnov, S. G. Ponomarev, A. S. Fionov, and V. V. Kolesov, Ceram. Int. 45, 2350 (2019). https://doi.org/10.1016/j.ceramint.2019.07.353

    Article  CAS  Google Scholar 

  11. U. Manzoor and D. K. Kim, J. Mater. Sci. Technol. 23, 655 (2007).

    CAS  Google Scholar 

  12. C. Pithan, D. Hennings, and R. Waser, Int. J. Appl. Ceram. Technol. 2, 1 (2005). https://doi.org/10.1111/j.1744-7402.2005.02008.x

    Article  CAS  Google Scholar 

  13. D. L. Branson, J. Am. Ceram. Soc. 48, 591 (1965). https://doi.org/10.1111/j.1151-2916.1965.tb14679.x

    Article  CAS  Google Scholar 

  14. N. J. van der Laag, M. D. Snel, P. C. M. M. Magusin, and G. de With, J. Eur. Ceram. Soc. 24, 2417 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.06.001

    Article  CAS  Google Scholar 

  15. H. Matsui, C. N. Xu, Y. Liu, and H. Tateyama, Phys. Rev. B 69, 235109 (2004). https://doi.org/10.1103/PhysRevB.69.235109

    Article  CAS  Google Scholar 

  16. Yu. D. Ivakin, M. N. Danchevskaya, O. G. Ovchinnikova, and G. P. Muravieva, J. Mater. Sci. 41, 1377 (2006). https://doi.org/10.1007/s10853-006-7410-1

    Article  CAS  Google Scholar 

  17. N. Flavia, F. N. Cunha-Duncan, and R. C. Bradt, J. Am. Ceram. Soc. 85, 2995 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00569.x

    Article  Google Scholar 

  18. L. Yang, G. Xiao, D. Ding, P. Li, L. Lv, and S. Yang, Mater. Res. Express. 6, 045007 (2019). https://doi.org/10.1088/2053-1591/aaf967

    Article  CAS  Google Scholar 

  19. M. N. Danchevskaya, Yu. D. Ivakin, and G. P. Muravieva, in Proceeding of the 14th European Meeting on Supercritical Fluids, 2014, p. 1. https://doi.org/10.13140/2.1.2604.1608

  20. V. B. Glushkova, V. A. Krzhizhanovskaya, O. N. Egorova, Y. P. Udalov, and V. P. Kachalova, Izv. Akad. Nauk, Neorg. Mater. 19, 95 (1983).

    CAS  Google Scholar 

  21. E. R. Kupp, S. Kochawattana, S. H. Lee, S. Misture, and G. L. Messing, J. Mater. Res. 29, 2303 (2014). https://doi.org/10.1557/jmr.2014.224

    Article  CAS  Google Scholar 

  22. A. V. Belyakov and N. A. Kulikov, Refract. Ind. Ceram. 52, 155 (2011). https://doi.org/10.1007/s11148-011-9386-x

    Article  CAS  Google Scholar 

  23. Yu. D. Ivakin, M. N. Danchevskaya, and G. P. Muravieva, High Press. Res. 20, 87 (2001). https://doi.org/10.1080/08957950108206156

    Article  Google Scholar 

  24. G. Y. Sung, K. Y. Kang, and S.-C. Park, J. Am. Ceram. Soc. 74, 437 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06904.x

    Article  CAS  Google Scholar 

  25. Z. Y. Mao, Y. C. Zhu, Q. N. Fei, and D. J. Wang, J. Lumin. 131, 1048 (2011). https://doi.org/10.1016/j.jlumin.2011.01.020

    Article  CAS  Google Scholar 

  26. M. N. Danchevskaya, Yu. D. Ivakin, S. N. Torbin, G. P. Muravieva, and O. G. Ovchinnikova, J. Mater. Sci. 41, 1385 (2006). https://doi.org/10.1007/s10853-006-7411-0

    Article  CAS  Google Scholar 

  27. M. Palatnikov, N. Sidorov, and K. Bormanis, Ferroelectrics 420, 80 (2011). https://doi.org/10.1080/00150193.2011.594014

    Article  CAS  Google Scholar 

  28. G. C. Bye and C. R. Howard, J. Appl. Chem. Biotechnol. 21, 319 (1971). https://doi.org/10.1002/jctb.5020211104

    Article  CAS  Google Scholar 

  29. M. N. Danchevskaya, Yu. D. Ivakin, L. F. Martynova, and G. P. Muravieva, High Press. Res. 20, 265 (2001). https://doi.org/10.1080/08957950108206173

    Article  Google Scholar 

  30. D. A. Bailey, Am. Mineral. 34, 601 (1949).

    CAS  Google Scholar 

  31. F. M. Wahl, R. E. Grim, and R. B. Graf, Am. Mineralog. 46, 196 (1961).

  32. O. Yamaguchi, T. Kanazawa, and K. Shimizu Notes, J. Chem. Soc. Dalton Trans., No. 5, 1005 (1982). https://doi.org/10.1039/DT9820001005

  33. M. N. Danchevskaya, S. N. Torbin, G. P. Muravieva, O. G. Ovchinnikova, and Yu. D. Ivakin, React. Solids 5, 293 (1988). https://doi.org/10.1016/0168-7336(88)80028-7

    Article  Google Scholar 

  34. V. B. Lazarev, G. P. Panasyuk, I. L. Voroshilov, G. P. Boudova, M. N. Danchevskaya, S. N. Torbin, and Yu. D. Ivakin, Ind. Eng. Chem. Res. 35, 3721 (1996). https://doi.org/10.1021/ie950404d

    Article  CAS  Google Scholar 

  35. M. N. Danchevskaya, Yu. D. Ivakin, S. N. Torbin, G. P. Panasyuk, V. N. Belan, and I. L. Voroshilov, High Press. Res. 20, 229 (2001). https://doi.org/10.1080/08957950108206170

    Article  Google Scholar 

  36. R. B. Bagwell and G. L. Messing, J. Am. Ceram. Soc. 82, 825 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01842.x

    Article  CAS  Google Scholar 

  37. M. N. Danchevskaya, Yu. D. Ivakin, S. N. Torbin, and G. P. Muravieva, J. Supercrit. Fluids 42, 419 (2007). https://doi.org/10.1016/j.supflu.2007.03.007

    Article  CAS  Google Scholar 

  38. Z. N. Kayani, F. Saleemi, and I. Batool, Appl. Phys. A 119, 589 (2015). https://doi.org/10.1007/s00339-015-9019-1

    Article  CAS  Google Scholar 

  39. H. Guo, A. Baker, J. Guo, and C. A. Randall, ACS Nano 10, 10606 (2016). https://doi.org/10.1021/acsnano.6b03800

    Article  CAS  PubMed  Google Scholar 

  40. H. Guo, J. Guo, A. Baker, and C. A. Randall, ACS Appl. Mater. Interfaces 8, 20909 (2016). https://doi.org/10.1021/acsami.6b07481

    Article  CAS  PubMed  Google Scholar 

  41. J.-P. Maria, X. Kang, R. D. Floyd, E. C. Dickey, H. Guo, J. Guo, A. Baker, S. Funihashi, and C. A. Randall, J. Mater. Res. 32, 3205 (2017). https://doi.org/10.1557/jmr.2017.262

    Article  CAS  Google Scholar 

  42. P. L. Chen and I. W. Chen, J. Am. Ceram. Soc. 80, 637 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb02879.x

    Article  CAS  Google Scholar 

  43. R. Chaim, M. Levin, A. Shlayer, and C. Estournes, Adv. Appl. Ceram. 107, 159 (2008). https://doi.org/10.1179/174367508X297812

    Article  CAS  Google Scholar 

  44. S. Funahashi, J. Guo, H. Guo, K. Wang, A. L. Baker, K. Shiratsuyu, and C. A. Randall, J. Am. Ceram. Soc. 100, 546 (2017). https://doi.org/10.1111/jace.14617

    Article  CAS  Google Scholar 

  45. J. Guo, R. Floyd, S. Lowum, J.-P. Maria, T. Herisson de Beauvoir, J.-H. Seo, and C. A. Randall, Ann. Rev. Mater. Res. 49, 275 (2019). https://doi.org/10.1146/annurev-matsci-070218-010041

    Article  CAS  Google Scholar 

  46. M. Biesuz, G. Taveri, A. I. Duff, E. Olevsky, D. Zhu, C. Hu, and S. Grasso, Adv. Appl. Ceram. 119, 75 (2020). https://doi.org/10.1080/17436753.2019.1692173

    Article  CAS  Google Scholar 

  47. A. Ndayishimiye, M. Y. Sengul, S. H. Bang, K. Tsuji, K. Takashima, T. Herisson de Beauvoir, D. Denux, J. M. Thibaud, A. C. T. van Duin, C. Elissalde, G. Goglio, and C. A. Randall, J. Eur. Ceram. Soc. 20, 1312 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.049

    Article  CAS  Google Scholar 

  48. X. Kang, R. Floyd, S. Lowum, M. Cabral, E. Dickey, and J.-P. Maria, J. Am. Ceram. Soc. 102, 4459 (2019). https://doi.org/10.1111/jace.16340

    Article  CAS  Google Scholar 

  49. A. Ndayishimiye, A. Largeteau, S. Mornet, M. Duttine, M.-A. Dourges, D. Denux, M. Verdier, M. Goune, T. Herisson de Beauvoir, C. Elissalde, and G. Goglio, J. Eur. Ceram. Soc. 38, 1860 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.10.011

    Article  CAS  Google Scholar 

  50. H. Guo, A. Baker, J. Guo, and C. A. Randall, J. Am. Ceram. Soc. 99, 3489 (2016). https://doi.org/10.1111/jace.14554

    Article  CAS  Google Scholar 

  51. B. Dargatz, J. Gonzalez-Julian, M. Bram, Y. Shinoda, F. Wakai, and O. Guillon, J. Eur. Ceram. Soc. 36, 1221 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.12.008

    Article  CAS  Google Scholar 

  52. B. Dargatz, J. Gonzalez-Julian, M. Bram, P. Jakes, A. Besmehn, L. Schade, R. Roder, C. Ronning, and O. Guillon, J. Eur. Ceram. Soc. 36, 1207 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.12.009

    Article  CAS  Google Scholar 

  53. J. Gonzalez-Julian, K. Neuhaus, M. Bernemann, J. Pereira da Silva, A. Laptev, M. Bram, and O. Guillon, Acta Mater. 144, 116 (2018). https://doi.org/10.1016/j.actamat.2017.10.055

    Article  CAS  Google Scholar 

  54. Jr. R. D. Floyd, S. Lowum, and J.-P. Maria, J. Mater. Sci. 55, 15117 (2020). https://doi.org/10.1007/s10853-020-05100-9

  55. Yu. D. Ivakin, A. V. Smirnov, V. P. Tarasovskii, V. V. Rybal’chenko, A. A. Vasin, A. A. Kholodkova, and M. N. Kormilitsin, Glas. Ceram. 76, 210 (2019). https://doi.org/10.1007/s10717-019-00167-6

    Article  CAS  Google Scholar 

  56. M. P. Vukalovic, Thermophysical Properties of Water and Steam (Mashinostroenie, Moscow, 1967) [in Russian].

    Google Scholar 

  57. B. N. Litvin and V. I. Popolitov, Hydrothermal Synthesis of Inorganic Compounds (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  58. T. Egbuchunam and D. Balkose, Dry. Technol. 30, 739 (2012). https://doi.org/10.1080/07373937.2012.661380

    Article  CAS  Google Scholar 

  59. M. Y. Sengul, J. Guo, C. A. Randall, and A. C. T. van Duin, Angew. Chem. 58, 12420 (2019). https://doi.org/10.1002/anie.201904738

    Article  CAS  Google Scholar 

  60. M. A. Henderson, Surf. Sci. Rep. 46, 1 (2002). https://doi.org/10.1016/S0167-5729(01)00020-6

    Article  CAS  Google Scholar 

  61. Y. Wang, M. Muhler, and C. Woll, Phys. Chem. Chem. Phys. 8, 1521 (2006). https://doi.org/10.1021/acs.jpcb.7b03335

    Article  CAS  PubMed  Google Scholar 

  62. X. Yu, P. Schwarz, A. Nefedov, B. Meyer, Y. Wang, and C. Woll, Angew. Chem. Int. Ed. 58, 17751 (2019). https://doi.org/10.1002/ange.201910191

    Article  CAS  Google Scholar 

  63. B. Meyer, D. Marx, O. Dulub, U. Diebold, M. Kunat, D. Langenberg, and C. Woll, Angew. Chem. Int. Ed. 43, 6642 (2004). https://doi.org/10.1002/anie.200461696

    Article  CAS  Google Scholar 

  64. J. T. Newberg, C. Goodwin, C. Arble, Y. Khalifa, J. A. Boscoboinik, and S. Rani, J. Phys. Chem. B 122, 472 (2018). https://doi.org/10.1021/acs.jpcb.7b03335

    Article  CAS  PubMed  Google Scholar 

  65. Y. Meng, J. Gao, J. Zhao Amoroso, J. Tong, and K. S. Brinkman, J. Mater. Sci. 54, 9291 (2019). https://doi.org/10.1007/s10853-019-03559-9

    Article  CAS  Google Scholar 

  66. I. E. Animitsa, Inorganic Chemistry: Proton Transport in Complex Oxides (Yurait, Moscow, 2017) [in Russian].

    Google Scholar 

  67. M. N. Danchevskaya, Yu. D. Ivakin, and S. N. Torbin, in Proceedings of the 7th Meeting on supercritical Fluids, Vol. 1: Particle Design, Materials and Reactions, December 6–8, 2000, Antibes, France, p. 185.

  68. Yu. D. Ivakin, M. N. Danchevskaya, S. N. Torbin, V. A. Kreisberg, and L. F. Martynova, in Proceedings of the 7th Meeting on Supercritical Fluids, Vol. 1: Particle Design, Materials and Reactions, December 6–8, 2000, Antibes, France, p. 525.

  69. M. N. Danchevskaya, O. G. Ovchinnikova, V. A. Kreisberg, and V. P. Rakcheev, J. Phiz. Chim. 62, 122 (1988).

    CAS  Google Scholar 

  70. Qianqian Liu, Xiao Tong, and Guangwen Zhou, Langmuir 31, 13117 (2015). https://doi.org/10.1021/acs.langmuir.5b02769

    Article  CAS  PubMed  Google Scholar 

  71. Ling Wang, Jianfeng Hu, Yao Cheng, Zhengyi Fu, Zhijian Shen, and Yan Xiong, Scr. Mater. 107, 59 (2015). https://doi.org/10.1016/j.scriptamat.2015.05.020

    Article  CAS  Google Scholar 

  72. M. N. Danchevskaya, Yu. D. Ivakin, L. F. Martynova, A. I. Zuy, G. P. Muravieva, and V. B. Lazarev, J. Therm. Anal. 46, 1215 (1996).

    Article  CAS  Google Scholar 

  73. A. I. Zui, Cand. Sci. (Chem.) Dissertation (Moscow State Univ., Moscow, 1997).

Download references

ACKNOWLEDGMENTS

This study was performed on the equipment of the Shared Facilities Center “United Scientific and Educational Center of Shared Facilities” of the Russian Technological University (MIREA). The authors thank V.V. Stolyarov, Chief Researcher of the Blagonravov Mechanical Engineering Institute of the Russian Academy of Sciences for his useful discussion of the results of the study.

Funding

This study was partially supported by the Development Program of Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Ivakin.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivakin, Y.D., Smirnov, A.V., Kormilitsin, M.N. et al. Effect of Mechanical Pressure on the Recrystallization of Zinc Oxide in a Water Fluid Medium under Cold Sintering. Russ. J. Phys. Chem. B 15, 1228–1250 (2021). https://doi.org/10.1134/S1990793121080054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121080054

Keywords:

Navigation