Skip to main content
Log in

Analysis of the Stages of Yittrum Iron Garnet Formation from a Precursor Obtained by the Supercritical Antisolvent CO2 Precipitation Technique

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this paper, the authors synthesize and study the phase formation of yttrium–iron garnet (YIG) using the supercritical antisolvent precipitation technique (SAS) at the initial stage for the first time. The effect of supercritical CO2 on the solution of acetates in the quasi-equilibrium state causes an abnormally high mobility of the structure’s elements. As a result, it becomes possible to form the equilibrium phase of the YIG solid product directly (without the appearance of transition oxides) at temperatures much lower than by solid-phase synthesis. The temperature decrease is due to a significant decrease in the activation energy of the solid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. D. Bahadur, Bull. Mater. Sci. 15, 431 (1992).

    Article  CAS  Google Scholar 

  2. C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103 (3), 1 (2008).

    Article  Google Scholar 

  3. J.-P. Ganne, R. Lebourgeois, M. Pate, D. Dubreuil, L. Pinier, and H. Pascard, J. Eur. Ceram. Soc. 27, 2771 (2007).

    Article  CAS  Google Scholar 

  4. J. D. Adam, L. E. Davis, G. F. Dionne, E. F. Schloemann, and S. N. Stitzer, IEEE Trans. Microwave Theory Tech. 50, 721 (2002).

    Article  CAS  Google Scholar 

  5. Y. F. Chen, K. T. Wu, Y. D. Yao, C. H. Peng, K. L. You, and W. S. Tse, Microelectron. Eng. 81, 329 (2005).

    Article  CAS  Google Scholar 

  6. M. Huang and S. Zhang, Mater. Chem. Phys. 73, 314 (2002).

    Article  CAS  Google Scholar 

  7. R. Valenzuela, Magnetic Ceramics (Cambridge Univ. Press, Cambridge, 2005), Vol. 4.

    Google Scholar 

  8. M. Barsoum and M. W. Barsoum, Fundamentals of Ceramics (CRC, Boca Raton, 2002).

    Book  Google Scholar 

  9. A. B. Ellis, Teaching General Chemistry: A Materials Science Companion (Am. Chem. Soc., Washington, DC, 1993).

    Google Scholar 

  10. T. Kimura, H. Takizawa, K. Uheda, T. Endo, and M. Shimada, J. Am. Ceram. Soc. 81, 2961 (1998).

    Article  CAS  Google Scholar 

  11. Y. S. Ahn, M. H. Han, and C. O. Kim, J. Mater. Sci. 31, 4233 (1996).

    Article  CAS  Google Scholar 

  12. R. D. Sanchez, C. A. Ramos, J. Rivas, P. Vaqueiro, and M. A. López-Quintela, Phys. B (Amsterdam, Neth.) 354 (14), 104 (2004).

  13. V. Buscaglia, F. Caracciolo, C. Bottino, M. Leoni, and P. Nanni, Acta Mater. 45, 1213 (1997).

    Article  CAS  Google Scholar 

  14. A. Ikesue and Y. L. Aung, J. Am. Ceram. Soc. 101, 5120 (2018).

    Article  CAS  Google Scholar 

  15. T. Žak, V. Ćosović, A. Ćosović, B. David, N. Talijan, and D. Živković, Sci. Sinter. 44, 103 (2012).

    Article  Google Scholar 

  16. D. S. Mathew and R. S. Juang, Chem. Eng. J. 129, 51 (2007).

    Article  CAS  Google Scholar 

  17. R. Sui and P. Charpentier, Chem. Rev. 112, 3082 (2012).

    Article  Google Scholar 

  18. E. Reverchon, I. de Marco, and E. Torino, J. Supercrit. Fluids 43, 126 (2007).

    Article  CAS  Google Scholar 

  19. E. Reverchon and R. Adami, J. Supercrit. Fluids 37, 1 (2006).

    Article  CAS  Google Scholar 

  20. J. A. Darr and M. Poliakoff, Chem. Rev. 99, 495 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. L. H. Jones and E. McLaren, J. Chem. Phys. 22, 1796 (1954).

    Article  CAS  Google Scholar 

  22. J. A. Goldsmith and S. D. Ross, Spectrochim. Acta, Part A 23, 1909 (1967).

    Article  CAS  Google Scholar 

  23. J. Farjas, J. Camps, P. Roura, S. Ricart, T. Puig, and X. Obradors, Thermochim. Acta 521, 84 (2011).

    Article  CAS  Google Scholar 

  24. G. A. M. Hussein, Thermochim. Acta 244, 139 (1994).

    Article  CAS  Google Scholar 

  25. G. V. S. Rao, C. N. R. Rao, and J. R. Ferraro, Appl. Spectrosc. 24, 436 (1970).

    Article  CAS  Google Scholar 

  26. J. Xie, H. Shu, J. Liu, C. Yin, and J. Lin, Mater. Sci. Eng. B 138, 289 (2007).

    Article  Google Scholar 

  27. W. Zhang, C. Fang, W. Yin, and Y. Zeng, Mater. Chem. Phys. 137, 877 (2013).

    Article  CAS  Google Scholar 

  28. A. R. Vazquez-Olmos, M. E. Sánchez-Vergara, A. L. Fernández-Osorio, A. Hernández-Garcia, R. Y. Sato-Berru, and J. R. Alvarez-Bada, J. Clust. Sci. 29, 225 (2018).

    CAS  Google Scholar 

  29. G. Z. Menzer, Kristallogr. 63, 157 (1926).

    CAS  Google Scholar 

  30. H. Winston and R. S. Halford, J. Chem. Phys. 17, 607 (1949).

    Article  CAS  Google Scholar 

  31. A. M. Hofmeister and K. R. Campbell, J. Appl. Phys. 72, 638 (1992).

    Article  CAS  Google Scholar 

  32. N. T. McDevitt, J. Opt. Soc. Am. 59, 1240 (1969).

    Article  CAS  Google Scholar 

  33. L. Glasser, J. Chem. Thermodyn. 78, 93 (2014).

    Article  CAS  Google Scholar 

  34. C. A. Geiger, Solid Solutions in Silicate and Oxide Systems (Budapest, Eur. Mineralog. Union, 2001).

    Book  Google Scholar 

  35. A. M. Savchenko and Y. V. Konovalov, Vopr. Materialoved., No. 3 (99), 29 (2019).

  36. G. M. Vol’dman and A. N. Zelikman, Theory of Hydrometallurgical Processes (Intermet Inzhinirig, Moscow, 2003), p. 464 [in Russian].

    Google Scholar 

  37. A. F. Guseva, Solid-Phase Reactions during the Preparation and Operation of Inorganic Materials (Ural. Univ., Ekaterinburg, 2005), p. 76 [in Russian].

    Google Scholar 

  38. S. A. Gridnev, Yu. E. Kalinin, A. V. Sitnikov, and O. V. Stognei, Nonlinear Phenomena in Nano- and Microheterogeneous Systems (BINOM, Labor. Znanii, Moscow, 2012), p. 352 [in Russian].

    Google Scholar 

  39. Yu. D. Tret’yakov, Solid-Phase Reactions (Khimiya, Moscow, 1978), p. 360 [in Russian].

    Google Scholar 

  40. H. H. Horowitz and G. Metzger, Anal. Chem. 35, 1464 (1964).

    Article  Google Scholar 

  41. V. I. Ivlev, N. E. Fomin, and V. A. Yudin, Thermal Analysis. Part 1: Thermal Analysis Methods (Mordov. Univ., Saransk, 2017) [in Russian].

    Google Scholar 

  42. A. K. Turukbaeva, in Proceedings of the 5th International Conference on Scientific Research: From Theory to Practice (Cheboksary, 2015), p. 28.

  43. T. V. Molodechkina and V. P. Glybin, Dokl. BGUIR, No. 2, 81 (2003).

    Google Scholar 

  44. A. Yu. Churyumov, A. I. Bazlov, A. A. Tsar’kov, K. F. Starodub, and D. V. Luzgin, Russ. J. Non-Ferrous Met. 55, 31 (2014).

    Article  Google Scholar 

  45. A. N. D’yachenko and V. V. Shagalov, Chemical Kinetics of Heterogeneous Processes, The School-Book (TPU, Tomsk, 2014) [in Russian].

    Google Scholar 

  46. A. N. D’yachenko, Practical Works on Heterogeneous Chemical Kinetics (TPU, Tomsk, 2004) [in Russian].

    Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education by project no. 18-29-06013 of the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Sokolov.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, I.E., Efremova, E.I., Boeva, N.M. et al. Analysis of the Stages of Yittrum Iron Garnet Formation from a Precursor Obtained by the Supercritical Antisolvent CO2 Precipitation Technique. Russ. J. Phys. Chem. B 15, 1126–1134 (2021). https://doi.org/10.1134/S1990793121070150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121070150

Keywords:

Navigation