Skip to main content
Log in

Study of the Molecular Composition of Exhaled Breath Condensate by High-Resolution Mass Spectrometry

  • CHEMICAL PHYSICS OF BIOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Exhaled breath condensate (EBC) contains a wide range of low- and high-molecular-weight compounds and is of great research interest in the search for markers of socially significant pathologies. Due to its noninvasive, rapid, and safe collection methods, an EBC sample can serve as a diagnostic sample for use in personalized instruments of body state monitoring. The use of modern high-sensitivity methods, such as mass spectrometry, forms the basis for reliable and most complete identification of the EBC molecular profile. During study, the comparative analysis of some of these methods was performed, and the most optimum approach to molecular profiling of exhaled breath condensate using high-resolution mass spectrometry was proposed. It has been shown that data from analysis of the EBC molecular profile can depend significantly on both the type of a device used to collect EBC and the cooling temperature of the condenser. It should be noted that a large number of compounds have identified in EBC residues sorbed on the walls of collecting devices that were additionally collected using an organic solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. M. Phillips, Sci. Am. 267, 74 (1992).

    Article  CAS  Google Scholar 

  2. M. D. Davis, A. Montpetit, and J. Hunt, Immunol. Allergy Clin. North Am. 32, 363 (2012).

    Article  Google Scholar 

  3. G. I. Sidorenko, E. I. Zborovsky, and D. I. Levina, Ter. Arkh. 52 (3), 65 (1980).

    CAS  PubMed  Google Scholar 

  4. A. S. Kononikhin, N. L. Starodubtseva, V. V. Chagovets, A. E. Bugrova, E. N. Nikolaev, and G. T. Sukhikh, J. Chromatogr. B 1047, 97 (2017).

  5. V. S. Kurova, E. Kh. Anaev, A. S. Kononikhin, I. A. Popov, K. Yu. Fedorchenko, E. N. Nikolaev, S. D. Varfolomeev, and A. G. Chuchalin, Russ. Chem. Bull. 59, 292 (2010).

    Article  CAS  Google Scholar 

  6. A. S. Kononikhin, K. Yu. Fedorchenko, A. M. Ryabokon, N. L. Starodubtseva, I. A. Popov, et al., Biochem. (Mosc.) Suppl. Ser B: Biomed. Chem. 10, 230 (2016).

    Google Scholar 

  7. R. M. Effros et al., Am. J. Respir. Crit. Care Med. 185, 803 (2012).

    Article  Google Scholar 

  8. C. Lourenco and C. Turner, Metabolites. 4, 465 (2014).

    Article  Google Scholar 

  9. J. Hunt, J. Allergy Clin. Immunol. 110, 28 (2002).

    Article  Google Scholar 

  10. M. Phillips et al., PLoS One. 8 (9) (2013).

  11. C. N. Ladva et al., J. Breath Res 12 (1) (2017).

  12. L. M. López-Sánchez et al., Am. J. Physiol. Lung Cell. Mol. Physiol. 313, 664 (2017).

    Article  Google Scholar 

  13. A. M. Ryabokon’, E. Kh. Anaev, A. S. Kononikhin, N. L. Starodubtseva, and G. Kh. Kireeva, Pul’monologiya. 1, 5 (2014).

    Google Scholar 

  14. K. Yu. Fedorchenko, A. M. Ryabokon, A. S. Kono-nikhin, S. I. Mitrofanov, V. V. Barmin, O. V. Pikin, E. H. Anaev, I. V. Gachok, I. A. Popov, E. N. Nikolaev, A. G. Chuchalin, and S. D. Varfolomeev, Mosc. Univ. Chem. Bull. 71, 134 (2016).

    Article  Google Scholar 

  15. I. Horváth et al., Eur. Respir. J. 26, 523 (2005).

    Article  Google Scholar 

  16. K. O. Zamuruyev, E. Borras, D. R. Pettit, A. A. Aksenov, J. D. Simmons, et al., Anal. Chim. Acta. 1006, 49 (2018).

    Article  CAS  Google Scholar 

  17. K. O. Zamuruyev, A. J. Schmidt, E. Borras, M. M. McCartney, M. Schivo, et al., J. Breath Res. 12 (3) (2018).

    Article  CAS  Google Scholar 

  18. Yu. I. Kostyukevich, A. S. Kononikhin, I. A. Popov, and E. N. Nikolaev, Russ. J. Phys. Chem. B. 12, 599 (2018).

    Article  CAS  Google Scholar 

  19. M. V. Gorshkov, O. N. Kharybin, A. N. Vilkov, V. V. Driven, and I. A. Popov, Khim. Fiz. 21 (4), 32 (2002).

    CAS  Google Scholar 

  20. I. A. Tarasova and M. V. Gorshkov, Khim. Fiz. 23 (7), 62 (2004).

    CAS  Google Scholar 

  21. A. A. Aksenov, K. O. Zamuruyev, A. Pasamontes, J. F. Brown, M. Schivo, et al., J. Chromatogr. B 1061–1062, 17 (2017).

    Article  Google Scholar 

  22. M. A. Fernandez-Peralbo et al., Talanta. 144, 1360 (2015).

    Article  CAS  Google Scholar 

  23. E. N. Nikolaev, I. A. Popov, A. S. Kononikhin, M. I. Indeikina, and E. N. Kukaev, Russ. Chem. Rev. 81, 1051 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The present work was performed using equipment and resources from the Center for Shared Use “New Materials and Technologies” at the Institute of Biochemical Physics of the Russian Academy of Sciences.

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 18-29-09158 MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kononikhin.

Additional information

Translated by K. Utegenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kononikhin, A.S., Zakharova, N.V., Yusupov, A.E. et al. Study of the Molecular Composition of Exhaled Breath Condensate by High-Resolution Mass Spectrometry. Russ. J. Phys. Chem. B 13, 951–955 (2019). https://doi.org/10.1134/S1990793119060216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793119060216

Keywords:

Navigation