Skip to main content
Log in

Multipotent mesenchymal stem cells of desquamated endometrium: Isolation, characterization, and application as a feeder layer for maintenance of human embryonic stem cells

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

In this study, we characterize new multipotent human mesenchymal stem cell lines (MSCs) derived from desquamated (shedding) endometrium of menstrual blood. The isolated endometrial MSC (eMSC) is an adhesive to plastic heterogeneous population composed mainly of endometrial glandular and stromal cells. The established cell lines meet the criteria of the International Society for Cellular Therapy for defining multipotent human MSCs of any origin. The eMSCs have positive expression of CD13, CD29, CD44, CD73, CD90, and CD105 markers and lack hematopoietic cell surface antigens CD19, CD34, CD45, CD117, CD130, and HLA-DR (class II). Multipotency of the established eMSCs is confirmed by their ability to differentiate into other mesodermal lineages, such as osteocytes and adipocytes. In addition, the isolated eMSCs partially (over 50%) express the pluripotency marker SSEA-4. However, they do not express Oct-4. Immunofluorescent analysis of the derived cells revealed the expression of the neural precursor markers nestin and β-III-tubulin. This suggests a neural predisposition of the established eMSCs. These cells are characterized by a high proliferation rate (doubling time 22–23 h) and a high colony-forming efficiency (about 60%). In vitro, the eMSCs undergo more than 45 population doublings without karyotypic abnormalities. We demonstrate that mitotically inactivated eMSCs are perfect feeder cells for maintenance of human embryonic stem cell lines (hESCs) C612 and C910. The eMSCs, being a feeder culture, sustain the hESC pluripotent status that verified by expression of Oct-4, alkaline phosphatase and SSEA-4 markers. The hESCs cocultured with the eMSCs retain their morphology and proliferative rate for more than 40 passages and exhibit the capability for spontaneous differentiation into embryoid bodies comprising three embryonic germ layers. Thus, an easy and noninvasive isolation of the eMSCs from menstrual blood, their multipotency and high proliferative activity in vitro without karyotypic abnormalities demonstrate the potential of use of these stem cells in regenerative medicine. Using the derived eMSCs as the feeder culture eliminates the risks associated with animal cells while transferring hESCs to clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MSCs:

mesenchymal stem cells

eMSCs:

endometrial MSCs

MEFs:

mouse embryonic fibroblasts

hESCs:

human embryonic stem cells

References

  • Blondheim, N.R., Levy, Y.S., Ben-Zur, T., Burshtein, A., Cherlow, T., Kan, I., Barzilai, R., Bahat-Stromza, M., Barhum, Y., Bulvik, S., Melamed, E., and Offen, D., Human Mesenchymal Stem Cells Express Neural Genes, Suggesting a Neural Predisposition, Stem Cells Dev., 2006, vol. 15, pp. 141–164.

    Article  PubMed  CAS  Google Scholar 

  • Borlongan, C.V., Kaneko, Y., Maki, M., Yu, S.J., Ali, M., Allickson, J.G., Sanberg, C.D., Kuzmin-Nichols, N., and Sanberg, P.R., Menstrual Blood Cells Display Stem Cell-Like Phenotypic Markers and Exert Neuroprotection Following Transplantation in Experimental Stroke, Stem Cells Dev., 2010, vol. 19, pp. 439–452.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, M.K., Rosler, E.S., Gregory, J., Fisk, J.G., Brandenberger, R., Ares, X., Miura, T., Lucero, M., and Rao, M.S., Properties of Four Human Embryonic Stem Cells Lines Maintained in a Feeder-Free Culture System, Dev. Dynam., 2004, vol. 229, pp. 243–258.

    Article  CAS  Google Scholar 

  • Challen, G.A., and Little, M., A Side Order of Stem Cells: The SP Phenotype, Stem Cells, 2006, vol. 24, pp. 3–12.

    Article  PubMed  Google Scholar 

  • Chen, L., He, D.M., and Zhang, Y., The Differentiation of Human Placenta-Derived Mesenchymal Stem Cells into Dopaminergic Cells in vitro, Cell. Mol. Biol. Lett., 2009, vol. 14, pp. 528–536.

    Article  PubMed  CAS  Google Scholar 

  • Cho, N.H., Park, Y.K., Kim, Y.T., Yang, H., and Kim, S.K., Lifetime Expression of Stem Cell Markers in the Uterine Endometrium, Fertil. Steril., 2004, vol. 81, pp. 403–407.

    Article  PubMed  CAS  Google Scholar 

  • Cui, C.H., Uyama, T., Miyado, K., Terai, M., Kyo, S., Kiyono, T., and Umezawa, A., Menstrual Blood-Derived Cells Confer Human Dystrophin Expression in the Murine Model of Duchenne Muscular Dystrophy via Cell Fusion and Myogenic Transdifferentiation, Mol. Biol. Cell, 2007, vol. 18, pp. 1586–1594.

    Article  PubMed  CAS  Google Scholar 

  • De, Coppi, P., Bartsch, G., Jr., Siddiqui, M.M., Xu, T., Santos, C.C., Perin, L., Mostoslavsky, G., Serre, A.C., Snyder, E.Y., Yoo, J.J., Furth, M.E., Soker, S., and Atala, A., Isolation of Amniotic Stem Cell Lines with Potential for Therapy, Nat. Biotechnol., 2007, vol. 25, pp. 100–106.

    Article  PubMed  Google Scholar 

  • Friedenstein, A.J., Petrakova, K.V., Kurolesova, A.I., and Frolova, G.P., Heterotopic of Bone Marrow. Analysis of Precursor Cells for Osteogenic and Hematopoietic Tissues, Transplantation, 1968, vol. 6, pp. 230–247.

    Article  PubMed  CAS  Google Scholar 

  • Gang, E.J., Bosnakovski, D., Figueiredo, C.A., Visser, J.W., and Perlingeiro, R.C., SSEA-4 Identifies Mesenchymal Stem Cells from Bone Marrow, Blood, 2007, vol. 109, pp. 1743–1751.

    Article  PubMed  CAS  Google Scholar 

  • Gargett, C.E., and Masuda, H., Adult Stem Cells in the Endometrium, Mol. Hum. Reprod., 2010, vol. 16, pp. 818–834.

    Article  PubMed  CAS  Google Scholar 

  • Gargett, C.E., Identification and Characterization of Human Endometrial Stem/Progenitor Cells, Aust. Nz J. Obstet. Gynaecol., 2006, vol. 46, pp. 250–253.

    Article  Google Scholar 

  • Goodell, M.A., Brose, K., Paradis, G., Conner, A.S., and Mulligan, R.C., Isolation and Functional Properties of Murine Hematopoietic Stem Cells that Are Replicating in vivo, J. Exp. Med., 1996, vol. 183, pp. 1797–1806.

    Article  PubMed  CAS  Google Scholar 

  • Han, X., Meng, X., Yin, Z., Rogers, A., Zhong, J., Rillema, P., Jackson, J.A., Ichim, T.E., Minev, B., Carrier, E., Patel, A.N., Murphy, M.P., Min, W.P., and Riordan, N.H., Inhibition of Intracranial Glioma Growth by Endometrial Regenerative Cells, Cell Cycle, 2009, vol. 8, pp. 606–610.

    Article  PubMed  CAS  Google Scholar 

  • Harris, D.T., Badowski, M., Ahmad, N., and Gaballa, M.A., The Potential of Cord Blood Stem Cells for Use in Regenerative Medicine, Expert. Opin. Biol. Ther., 2007, vol. 7, pp. 1311–1322.

    Article  PubMed  CAS  Google Scholar 

  • Hida, N., Nishiyama, N., Miyoshi, S., Kira, S., Segawa, K., Uyama, T., Mori, T., Miyado, K., and Ikegami, Y., Novel Cardiac Precursor-Like Cells from Human Menstrual Blood-Derived Mesenchymal Cells, Stem Cells, 2008, vol. 26, pp. 1695–1704.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, L.M., and Carpenter, M.K., Human Embryonic Stem Cell Stability, Stem Cell Rev., 2005, vol. 1, pp. 139–144.

    Article  PubMed  CAS  Google Scholar 

  • Husein, K.S., and Thiemermann, C., Mesenchymal Stromal Cells: Current Understanding and Clinical Status, Stem Cells, 2010, vol. 28, pp. 585–596.

    Google Scholar 

  • Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., Soreq, H., and Benvenisty, N., Differentiation of Human Embryonic Stem Cells into Embryoid Bodies Comprising the Three Embryonic Germ Layers, Mol. Med., 2000, vol. 6, pp. 88–95.

    PubMed  CAS  Google Scholar 

  • Jori, F.P., Napolitano, M.A., Melone, M.A., Cipollaro, M., Cascino, A., Altucci, L., Peluso, G., Giordano, A., and Galderisi, U., Molecular Pathways Involved in Neural in vitro Differentiation of Marrow Stromal Stem Cells, J. Cell Biochem., 2005, vol. 94, pp. 645–655.

    Article  PubMed  CAS  Google Scholar 

  • Kato, K., Yoshimoto, M., Kato, K., Adachi, S., Yamayoshi, A., Arima, T., Asanoma, K., Kyo, S., Nakahata, T., and Wake, N., Characterization of Side-Population Cells in Human Normal Endometrium, Hum. Reprod., 2007, vol. 22, pp. 1214–1223.

    Article  PubMed  CAS  Google Scholar 

  • Kearns, M., and Lala, P.K., Bone Marrow Origin of Decidual Cell Precursors in the Pseudopregnant Mouse Uterus, J. Exp. Med., 1982, vol. 155, pp. 1537–1554.

    Article  PubMed  CAS  Google Scholar 

  • Kozhukharova, I.V., Fridlyanskaya, I.I., Kovaleva, Z.V., Pugovkina, N.A., Alekseenko, L.L., Zenin, V.V., Ivantsov, K.M., Leont’eva, O.K., Grinchuk, T.M., and Nikol’sky, N.N., Novel Human Embryonic Stem Cell Lines C612 and C910, Tsitologiia, 2009, vol. 51, no. 7, pp. 551–558.

    PubMed  CAS  Google Scholar 

  • Lee, J.B., Lee, J.E., Park, J.H., Kim, S.J., Kim, M.K., Roh, S.I., and Yoon, H.S., Establishment and Maintenance of Human Embryonic Stem Cell Lines on Human Feeder Cells Derived from Uterine Endometrium under Serum-Free Condition, Biol. Reprod., 2005, vol. 72, pp. 42–49.

    Article  PubMed  CAS  Google Scholar 

  • Lees, J.G., Lim, S.A., Croll, T., Williams, G., Lui, S., Cooper-White, J., McQuade, L.R., Mathiyalagan, B., and Tuch, B.E., Transplantation of 3D Scaffolds Seeded with Human Embryonic Stem Cells: Biological Features of Surrogate Tissue and Teratoma-Forming Potential, Regen. Med., 2007, vol. 2, pp. 289–300.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, T.E., Levenstein, M.E., Jones, J.M., Berggren, W.T., Mitchen, E.R., Frane, J.L., Crandall, L.J., Daigh, C.A., Conard, K.R., Piekarczyk, M.S., Llanas, R.A., and Thomson, J.A., Derivation of Human Embryonic Stem Cells in Defined Conditions, Nat. Biotechnol., 2006, vol. 24, pp. 185–187.

    Article  PubMed  CAS  Google Scholar 

  • Masuda, H., Matsuzaki, Y., Hiratsu, E., Ono, M., Nagashima, T., Kajitani, T., Arase, T., Oda, H., Uchida, H., Asada, H., Ito, M., Yoshimura, Y., Maruyama, T., and Okano, H., Stem Cell-Like Properties of the Endometrial Side Population: Implication in Endometrial Regeneration, PLoS One, 2010, vol. 5, p. e10387.

    Article  PubMed  Google Scholar 

  • Meng, X., Ichim, T.E., Zhong, J., Rogers, A., Yin, Z., Jackson, J., Wang, H., Ge, W., Bogin, V., Chan, K.W., Thébaud, B., and Riordan, N.H., Endometrial Regenerative Cells: A Novel Stem Cell Population, J. Transl. Med., 2007, vol. 5, pp. 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, M.P., Wang, H., Patel, A.N.., Kambhampati, S., Angle, N., Chan, K., Marleau, A.M., Pyszniak, A., Carrier, E., and Ichim, T.E., et al., Allogeneic Endometrial Regenerative Cells: An ‘off the Shelf Solution’ for Critical Limb Ischemia? J. Transl. Med., 2008, vol. 6, pp. 45–52.

    Article  PubMed  Google Scholar 

  • Musina, R.A., Bekchanova, E.S., Belyavsky, A.V., and Sukhikh, G.T., Differentiation Potential of Mesenchymal Stem Cells of Different Origin, Klet. Tekhn. Biol. Med., 2006, vol. 1, pp. 39–43.

    Google Scholar 

  • Musina, R.A., Belyavsky, A.V., Tarusova, O.V., Solovyeva, E.V., and Sukhikh, G.T., Endometrial Mesenchymal Stem Cells Obtained from Menstrual Blood, Klet. Tekhn. Biol. Med., 2008, vol. 2, pp. 110–114.

    Google Scholar 

  • Padykula, H.A., Coles, L.G., Okulicz, W.C., Rapaport, S.I., Mccracken, J.A., King, N.W., Jr., Longcope, C., and Kaiserman-Abramof, I.R., The Basalis of the Primate Endometrium: A Bifunctional Germinal Compartment, Biol. Reprod., 1989, vol. 40, pp. 681–690.

    Article  PubMed  CAS  Google Scholar 

  • Padykula, H.A., Regeneration in the Primate Uterus: The Role of Stem Cells, Ann. N.Y. Acad. Sci., 1991, vol. 622, pp. 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Park, K.R., Inoue, T., Ueda, M., Hirano, T., Higuchi, T., Maeda, M., Konishi, I., Fujiwara, H., and Fujii, S., CD9 Is Expressed on Human Endometrial Epithelial Cells in Association with Integrins a6, a3 and B1, Mol. Human Reprod., 2000, vol. 6, pp. 252–257.

    Article  CAS  Google Scholar 

  • Parker, A.M., and Katz, A.J., Adipose-Derived Stem Cells for the Regeneration of Damaged Tissues, Expert. Opin. Bio. Ther., 2006, vol. 6, pp. 567–578.

    Article  CAS  Google Scholar 

  • Patel, A.N., Park, E., Kuzman, M., Benetti, F., Silva, F.J., and Allickson, J.G., Multipotent Menstrual Blood Stromal Stem Cells: Isolation, Characterization, and Differentiation, Cell Transplant., 2008, vol. 17, pp. 303–311.

    Article  PubMed  Google Scholar 

  • Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R., Multilineage Potential of Adult Human Mesenchymal Stem Cells, Science, 1999, vol. 284, pp. 143–147.

    Article  PubMed  CAS  Google Scholar 

  • Prianishnikov, V.A., On the Concept of Stem Cell and a Model of Functional Morphological Structure of the Endometrium, Contraception, 1978, vol. 18, pp. 213–223.

    Article  PubMed  CAS  Google Scholar 

  • Schwab, K.E., and Gargett, C.E., Co-Expression of Two Peri-Vascular Cell Markers Isolates Mesenchymal Stem-Like Cells from Human Endometrium, Hum. Reprod., 2007, vol. 22, pp. 2903–2911.

    Article  PubMed  CAS  Google Scholar 

  • Seli, E., Senturk, L., Bahtiyar, O.M., Kayisli, U.A., and Arici, A., Expression of Aminopeptidase N in Human Endometrium and Regulation of Its Activity by Estrogen, Fertil. Steril., 2001, vol. 75, pp. 1172–1176.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J.R., Pochampally, R., Perry, A., Shu-Ching, Hsu, and Prockop, D.J., Isolation of a Highly Clonogenic and Multipotential Subfraction of Adult Stem Cells from Bone Marrow Stroma, Stem Cells, 2004, vol. 22, pp. 823–837.

    Article  PubMed  Google Scholar 

  • Swijnenburg, R.J., Tanaka, M., Vogel, H., Baker, J., Kofidis, T., Gunawan, F., Lebl, D.R., Caffarelli, A.D., De Bruin, J.L., Fedoseyeva, E.V., and Robbins, R., Embryonic Stem Cell Immunogenicity Increases upon Differentiation after Transplantation into Ischemic Myocardium, Circulation, 2005, vol. 112, pp. 166–172.

    Google Scholar 

  • Taylor, H.S., Endometrial Cells Derived from Donor Stem Cells in Bone Marrow Transplant Recipients, J. Amer. Med. Assoc., 2004, vol. 292, pp. 81–85.

    Article  CAS  Google Scholar 

  • Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M., Embryonic Stem Cell Lines Derived from Human Blastocysts, Science, 1998, vol. 282, pp. 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  • Toyoda, M., Cui, C., and Umezawa, A., Myogenic Transdifferentiation of Menstrual Blood-Derived Cells, Acta Myol., 2007, vol. 26, pp. 176–178.

    PubMed  CAS  Google Scholar 

  • Trzaska, K.A., Kuzhikandathil, E.V., and Rameshwar, P., Specification of a Dopaminergic Phenotype from Adult Human Mesenchymal Stem Cells, Stem Cells, 2007, vol. 25, pp. 2797–2808.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, E.F., Gao, X.B., Yao, K.V., Andrews, Z.B., Du, H., Elsworth, J.D., and Taylor, H.S., Endometrial Stem Cell Transplantation Restores Dopamine Production in a Parkinson’s Disease Model, J. Cell. Mol. Med., 2011, vol. 15, pp. 747–755.

    Article  PubMed  CAS  Google Scholar 

  • Woodbury, D., Reynolds, A., and Black, I.B., Adult Bone Marrow Stromal Stem Cells Express Germline, Ectodermal, Endodermal and Mesodermal Genes Prior to Neurogenesis, J. Neurosci. Res., 2002, vol. 96, pp. 908–917.

    Article  Google Scholar 

  • Zhong, Z., Patel, A.N., Ichim, T.E., Riordan, N.H., Wang, H., Min, W.P., Woods, E.J., Reid, M., Mansilla, E., Marin, G.H., Drago, H., Murphy, M.P., and Minev, B., Feasibility Investigation of Allogeneic Endometrial Regenerative Cells, J. Transl. Med., 2009, vol. 7, pp. 15–21.

    Article  PubMed  Google Scholar 

  • Zwart, I., Hill, A.J., Girdlestone, J., Manca, M.F., Navarrete, R., Navarrete, C., and Jen, L.S., Analysis of Neural Potential of Human Umbilical Cord Blood-Derived Multipotent Mesenchymal Stem Cells in Response to a Range of Neurogenic Stimuli, J. Neurosci. Res., 2008, vol. 86, pp. 1902–1915.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Zemelko.

Additional information

Original Russian Text © V.I. Zemelko, T.M. Grinchuk, A.P. Domnina, I.V. Artzibasheva, V.V. Zenin, A.A. Kirsanov, N.K. Bichevaia, V.S. Korsak, N.N. Nikolsky, 2011, published in Tsitologiya, 2011, Vol. 53, No. 12, pp. 919–929.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zemelko, V.I., Grinchuk, T.M., Domnina, A.P. et al. Multipotent mesenchymal stem cells of desquamated endometrium: Isolation, characterization, and application as a feeder layer for maintenance of human embryonic stem cells. Cell Tiss. Biol. 6, 1–11 (2012). https://doi.org/10.1134/S1990519X12010129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X12010129

Keywords

Navigation