Skip to main content
Log in

The First Dipeptide Mimetic of Neurotrofin-3: Design and Pharmacological Properties

  • BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY
  • Published:
Doklady Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The dimeric dipeptide mimetic hexamethylenediamide bis-(N-monosuccinyl-L-asparaginyl-L-asparagine) (GTS-301) was created on the basis of the structure of the exposed region of the neurotrophin-3 4th loop. The new compound, as well as the full-length neurotrophin, activated the TrkC and TrkB receptors. GTS-301 showed neuroprotective activity in experiments on HT-22 mouse hippocampal cells under conditions of oxidative stress and glutamate toxicity at concentrations of 10–12 and 10–8 M, respectively, and antidepressant-like activity in the forced swimming test on mice with 7-day intraperitoneal administration in doses of 10–40 mg/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bothwell, M., NGF, BDNF, NT-3, and NT-4, Handb. Exp. Pharmacol., 2014, vol. 220, pp. 3–15.

    Article  CAS  PubMed  Google Scholar 

  2. de Miranda, A.S., de Barros J.L.V.M., and Teixeira, A.L., Is neurotrophin-3 (NT-3): a potential therapeutic target for depression and anxiety?, Expert Opin. Ther. Targets, 2020, vol. 24, no. 12, pp. 1225–1238.

    Article  CAS  PubMed  Google Scholar 

  3. Duricki, D.A., Drndarski, S., Bernanos, M., et al., Stroke recovery in rats after 24-hour-delayed intramuscular neurotrophin-3 infusion, Ann. Neurol., 2019, vol. 85, no. 1, pp. 32–46.

    CAS  PubMed  Google Scholar 

  4. Shirayama, Y., Chen, A.C.-H., Nakagawa, S., et al., Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression, J. Neurosci., 2002, vol. 22, no. 8, pp. 3251–3261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pattarawarapan, M., Zaccaro, M.C., Saragovi, U.H., et al., New templates for syntheses of ring-fused, C(10) beta-turn peptidomimetics leading to the first reported small-molecule mimic of neurotrophin-3, J. Med. Chem., 2002, vol. 45, no. 20, pp. 4387–4390.

    Article  CAS  PubMed  Google Scholar 

  6. Kempfle, J.S., Duro, M.V., Zhang, A., et al., A novel small molecule neurotrophin-3 analogue promotes inner ear neurite outgrowth and synaptogenesis in vitro, Front. Cell. Neurosci., 2021, vol. 15, article ID 666706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zaccaro, M.C., Lee, H.B., Pattarawarapan, M., et al., Selective small molecule peptidomimetic ligands of TrkC and TrkA receptors afford discrete or complete neurotrophic activities, Chem. Biol., 2005, vol. 12, no. 9, pp. 1015–1028.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, D., Brahimi, F., Angell, Y., et al., Bivalent peptidomimetic ligands of TrkC are biased agonists and selectively induce neuritogenesis or potentiate neurotrophin-3 trophic signals, ACS Chem. Biol., 2009, vol. 18, no. 4 (9), pp. 769–781.

  9. Gudasheva, T.A., Ostrovskaya, R.U., and Seredenin, S.B., Novel technologies for dipeptide drugs design and their implantation, Curr. Pharm. Des., 2018, vol. 24, no. 26, pp. 3020–3027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gudasheva, T.A., Povarnina, P.Y., Tarasiuk, A.V., and Seredenin, S.B., Low-molecular mimetics of nerve growth factor and brain-derived neurotrophic factor: design and pharmacological properties, Med. Res. Rev., 2021, vol. 41, no. 5, pp. 2746–2774.

    Article  CAS  PubMed  Google Scholar 

  11. Logvinov, I.O., Antipova, T.A., Gudasheva, T.A., et al., Neuroprotective effects of dipeptide analogue of brain-derived neurotrophic factor GSB-106 in in vitro experiments, Bull. Exp. Biol. Med., 2013, vol. 155, no. 3, pp. 343–345.

    Article  CAS  PubMed  Google Scholar 

  12. Reichardt, L.F., Neurotrophin-regulated signalling pathways, Philos. Trans. R. Soc., B, 2006, vol. 361, no. 1473, pp. 1545–1564.

  13. Gudasheva, T.A., Povarnina, P.Y., Antipova, T.A., Firsova, Y.N., Konstantinopolsky, M.A., and Seredenin, S.B., Dimeric dipeptide mimetics of the nerve growth factor Loop 4 and Loop 1 activate TRKA with different patterns of intracellular signal transduction, J. Biomed. Sci., 2015, vol. 8, no. 22, p. 106.

    Article  Google Scholar 

  14. Ip, N.Y., Stitt, T.N., Tapley, P., et al., Similarities and differences in the way neurotrophins interact with the Trk receptors in neuronal and nonneuronal cells, Neuron, 1993, vol. 10, no. 2, pp. 137–149.

    Article  CAS  PubMed  Google Scholar 

  15. Angoa- Pérez, M., Kane, M.J., Briggs, D.I., et al., Mice genetically depleted of brain serotonin do not display a depression-like behavioral phenotype, ACS Chem. Neurosci., 2014, vol. 5, no. 10, pp. 908–919.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Gudasheva.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudasheva, T.A., Sazonova, N.M., Tarasiuk, A.V. et al. The First Dipeptide Mimetic of Neurotrofin-3: Design and Pharmacological Properties. Dokl Biochem Biophys 505, 160–165 (2022). https://doi.org/10.1134/S1607672922040032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1607672922040032

Keywords:

Navigation