Skip to main content
Log in

Kinetics of Chemical Processes in the Human Brain. The Cholinergic Synapse—Mechanisms of Functioning and Control Methods

  • BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY
  • Published:
Doklady Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In the framework of the kinetic model, the functioning of the cholinergic synapse is considered. The results of mathematical modeling of changes in the level of acetylcholine, induced pH impulse, the influence of the frequency of impulse transmission and inhibition of acetylcholinesterase are presented. Physicochemical explanation for a number of important physiological phenomena, such as neuromuscular paralysis, the molecular mechanism of neurological memory, and actions of nerve poisons and toxins, is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Rozengart, E.V., Basova, N.E., Moralev, S.N., et al., Research on cholinesterases in the Soviet Union and Russia: a historical perspective, Chem.-Biol. Interact., 2013, vol. 203, no. 1, pp. 3–9.

    Article  CAS  Google Scholar 

  2. Nemukhin, A.V., Grigorenko, B.L., Morozov, D.I., et al., On quantum mechanical-molecular mechanical (QM/MM) approaches to model hydrolysis of acetylcholine by acetylcholinesterase, Chem.-Biol. Interact., 2013, vol. 203, no. 1, pp. 51–56.

    Article  CAS  Google Scholar 

  3. Rosenberry, T.L., Mallender, W.D., Thomas, P.J., et al., A steric blockade model for inhibition of acetylcholinesterase by peripheral site ligands and substrate, Chem.-Biol. Interact., 1999, vols. 119–120, pp. 85–97.

    Article  Google Scholar 

  4. Reed, M.C., Lieb, A., and Nijhout, H.F., The biological significance of substrate inhibition: a mechanism with diverse functions, BioEssays, 2010, vol. 32, pp. 422–429.

    Article  CAS  Google Scholar 

  5. Shi, L., Fu, A.K.Y., and Ip, N.Y., Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction, Trends Neurosci., 2012, vol. 35, no. 7, pp. 441–453.

    Article  CAS  Google Scholar 

  6. Tai, K., Bond, S.D., Macmillan, H.R., et al., Finite element simulations of acetylcholine diffusion in neuromuscular junctions, Biophys. J., 2003, vol. 84, no. 4, pp. 2234–2241.

    Article  CAS  Google Scholar 

  7. Hasselmo, M.E., The role of acetylcholine in learning and memory, Curr. Opin. Neurobiol., 2006, vol. 16, no. 6, pp. 710–715.

    Article  CAS  Google Scholar 

  8. Pirazzini, M., Rossetto, O., Eleopra, R., and Montecucco, C., Botulinum neurotoxins: biology, pharmacology, and toxicology, Pharmacol. Rev., 2017, vol. 69, pp. 200–235.

    Article  CAS  Google Scholar 

  9. Papapetropoulos, S. and Singer, C., Botulinum toxin in movement disorders, Semin. Neurol., 2007, vol. 27, no. 2, pp. 183–194.

    Article  Google Scholar 

  10. Lushchekina, S., Gubaydullina, A., Polomskih, V., et al., QM/MM of ChE-catalyzed reactions with special attention to OP inhibition, FEBS J., 2013, vol. 280, no. SI, suppl. 1, pp. 164–174.

  11. Kassa, J., Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents, J. Toxicol.: Clin. Toxicol., 2002, vol. 40, no. 6, pp. 803–816.

    CAS  Google Scholar 

  12. Varfolomeev, S.D., Semenova, N.A., Bykov, V.I., et al., Kinetics of chemical processes in the human brain. Modeling a BOLD signal in fMRI study, Dokl. Akad. Nauk, 2019, vol. 488, no. 2, pp. 157–161.

    Google Scholar 

  13. Komersova, A., Kovarova, M., Komers, K., et al., Why is the hydrolytic activity of acetylcholinesterase ph dependent? Kinetic study of acetylcholine and acetylthiocholine hydrolysis catalyzed by acetylcholinesterase from electric eel, Zeitschrift fur Naturforschung. C,J. Biosci., 2018, vol. 73, no. 10, pp. 345–351.

    CAS  Google Scholar 

  14. Aidoo, A. and Ward, K., Spatiotemporal concentration of acetylcholine in vertebrate synaptic cleft, Math. Comp. Model., 2006, vol. 44, pp. 952–962.

    Article  Google Scholar 

  15. Dunant, Y. and Gisiger, V., Ultrafast and slow cholinergic transmission. Different involvement of acetylcholinesterase molecular forms, Molecules, 2017, vol. 22, no. 8, pp. 1300–1315.

    Article  Google Scholar 

  16. Li, L. and McNamee, M.G., Modulation of nicotinic acetylcholine receptor channel by pH: a difference in ph sensitivity of torpedo and mouse receptors expressed in Xenopus oocytes, Cell. Mol. Neurobiol., 1992, vol. 12, no. 2, pp. 83–93.

    Article  CAS  Google Scholar 

  17. Palma, A., Li, L., Chen, X., et al., Effects of pH on acetylcholine receptor function, J. Membr. Biol., 1991, vol. 120, pp. 67–73.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no. 18-13-00030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bykov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varfolomeev, S.D., Bykov, V.I. & Tsybenova, S.B. Kinetics of Chemical Processes in the Human Brain. The Cholinergic Synapse—Mechanisms of Functioning and Control Methods. Dokl Biochem Biophys 492, 147–151 (2020). https://doi.org/10.1134/S1607672920030126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1607672920030126

Keywords:

Navigation