Skip to main content
Log in

In Situ Preparation of Polymer Nanocomposites Based on Sols of Surface-Modified Detonation Nanodiamonds by Classical and Controlled Radical Polymerization

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract—

The possibility of surface modification of detonation nanodiamonds to give them dispersability in methyl methacrylate is considered. In situ polymer composites are obtained by classical radical polymerization and reversible chain-transfer polymerization based on stable sols of detonation nanodiamonds in a monomer. Evidence that nanodiamonds are dispersed in a polymer matrix up to a size of units of nanometers is given. The effect of detonation nanodiamonds on the molecular weight characteristics and glass transition temperature of poly(methyl metacrylate) obtained in their presence is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. O. A. Shenderova and D. M. Gruen, Ultrananocrystalline Diamond: Synthesis, Properties, and Applications (William Andrew Publ., New York, 2012).

    Google Scholar 

  2. V. Yu. Dolmatov, Detonation Nanodiamonds. Production, Properties, Application (NPO “Professional”, St. Petersburg, 2011) [in Russian].

  3. J. Whitlow, S. Pacelli, and A. Paul, J. Controlled Release 261, 62 (2017).

    Article  CAS  Google Scholar 

  4. A. Shakun, J. Vuorinen, M. Hoikkanen, M. Poikelispää, A. Das, and A. Hard, Composites, Part A 64, 49 (2014).

    Article  CAS  Google Scholar 

  5. A. Rifai, E. Pirogova, and K. Fox, in Encyclopedia of Biomedical Engineering (Elsevier Inc, Amsterdam, 2019), Vol. 1, p. 97.

    Google Scholar 

  6. I. V. Shugalei, A. M. Sudarikov, A. P. Voznyakovskii, I. V. Tselinskii, A. V. Garabadzhiu, and M. A. Ilyushin, Surface Chemistry of Detonation Nanodiamonds as Foundation for Creation of Biomedical Products (LGU imeni A. S. Pushkina, St. Petersburg, 2012) [in Russian].

  7. I. Neitzel, V. N. Mochalin, and Y. Gogotsi, in Nanodiamonds. Advanced Material Analysis, Properties and Applications. Micro and Nano Technologies (Elsevier Inc., Amsterdam, 2017), p. 365.

    Google Scholar 

  8. V. N. Mochalin and Y. Gogotsi, Diamond Relat. Mater. 58, 161 (2015).

    Article  CAS  Google Scholar 

  9. J. K. Y. Lee, N. Chen, S. Peng, L. Li, L. Tian, N. Thakor, and S. Ramakrishna, Prog. Polym. Sci. 86, 40 (2018).

    Article  CAS  Google Scholar 

  10. A. Kausar, Hybrid Polymer Composite Materials. Structure and Chemistry (Elsevier Inc., Amsterdam, 2017).

    Google Scholar 

  11. N. Nunn, M. Torelli, G. McGuire, and O. Shenderova, Curr. Opinion Solid State Mater. Sci. 21, 1 (2017).

    Article  CAS  Google Scholar 

  12. Detonation Nanodiamonds, Ed. by A. Y. Vul’ and O. A. Shenderova (CRC Press; Taylor and Francis Group, Boca Raton, 2013).

  13. Nanodiamonds. Advanced Material Analyi, Properties and Applications, Ed. by J.-C. Arnault (Elsevier, Saint Louis, 2017).

    Google Scholar 

  14. L. Schmidlin, V. Pichot, M. Comet, S. Josset, P. Rabu, and D. Spitzer, Diamond Relat. Mater. 22, 113 (2012).

    Article  CAS  Google Scholar 

  15. I. Neitzel, V. Mochalin, I. Knoke, G. R. Palmese, and Y. Gogotsi, Compos. Sci. Technol. 71, 710 (2011).

    Article  CAS  Google Scholar 

  16. Z. Špitalský, A. Kromka, L. Matějka, P. Černoch, J. Kovářová, J. Kotek, and M. Šlouf, Adv. Compos. Lett. 17, 29 (2008).

    Google Scholar 

  17. Y. Zhang, K. Y. Rhee, D. Hui, and S.-J. Park, Composites, Part B 143, 19 (2018).

    Article  CAS  Google Scholar 

  18. Q. Xu and X. Zhao, J. Mater. Chem. 22, 16416 (2012).

    Article  CAS  Google Scholar 

  19. Y. Zhu, X. Xu, B. Wang, and Z. Feng, Chin. Particuol. 2, 132 (2004).

    Article  CAS  Google Scholar 

  20. P. Khalilnezhad, S. A. Sajjadi, and S. M. Zebarjad, Diamond Relat. Mater. 45, 7 (2014).

    Article  CAS  Google Scholar 

  21. Yu. V. Kulvelis, A. V. Shvidchenko, A. E. Aleksenskii, E. B. Yudina, V. T. Lebedev, M. S. Shestakov, A. T. Dideikin, L. O. Khozyaeva, A. I. Kuklin, Gy. Török, M. I. Rulev, and A. Ya. Vul, Diamond Relat. Mater. 87, 78 (2018).

    Article  CAS  Google Scholar 

  22. R.-M. Chin, S.-J. Chang, C.-C. Li, C.-W. Chang, and R.-H. Yu, J. Colloid Interface Sci. 520, 119 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Y.-Q. Zhao, K.-T. Lau, J.-K. Kim, C.-L. Xu, D.-D. Zhao, and H.-L. Li, Composites, Part B 41, 646 (2010).

    Article  CAS  Google Scholar 

  24. C. Presti, L. Ferry, J. G. Alauzun, L. Dumazert, B. Gallard, J.-C. Quantin, J.-M. Lopez Cuesta, and P. H. Mutin, Diamond Relat. Mater. 76, 141 (2017).

    Article  CAS  Google Scholar 

  25. A. P. Korobko, N. P. Bessonova, S. V. Krasheninnikov, E. V. Konyukhova, S. N. Drozd, and S. N. Chvalun, Diamond Relat. Mater. 16, 2141 (2007).

    Article  CAS  Google Scholar 

  26. Y.-J. Zhaia, Z.-C. Wanga, W. Huanga, J.-J. Huanga, Y.-Y. Wangb, and Y.-Q. Zhao, Mater. Sci. Eng., A 528, 7295 (2011).

    Article  CAS  Google Scholar 

  27. I. Neitzel, V. N. Mochalin, J. Niu, J. Cuadra, A. Kontsos, G. R. Palmese, and Y. Gogotsi, Polymer 53, 5965 (2012).

    Article  CAS  Google Scholar 

  28. T. Subhani, M. Latif, I. Ahmad, S. A. Rakha, N. Ali, and A. A. Khurram, Mater. Des. 87, 436 (2015).

    Article  CAS  Google Scholar 

  29. Y. A. Haleem, D. Liu, W. Chen, C. Wang, C. Hong, Z. He, J. Liu, P. Song, S. Yu, and L. Song, Composites, Part B 78, 480 (2015).

    Article  CAS  Google Scholar 

  30. V. Vatanpour, E. Salehi, N. Sahebjamee, and M. Ashrafi, Arabian J. Chem. 13, 1731 (2018).

    Article  CAS  Google Scholar 

  31. U. Maitra, K. E. Prasad, U. Ramamurty, and C. N. R. Rao, Solid State Commun. 149, 1693 (2009).

    Article  CAS  Google Scholar 

  32. D. Passeri, A. Biagioni, M. Rossi, E. Tamburri, and M. L. Terranova, Eur. Polym. J. 49, 991 (2013).

    Article  CAS  Google Scholar 

  33. A. Krueger and D. Lang, Adv. Funct. Mater. 22, 890 (2012).

    Article  CAS  Google Scholar 

  34. A. Krueger, in Comprehensive Hard Materials (Elsevier Inc, Amsterdam, 2014), Vol. 3, p. 379.

    Google Scholar 

  35. G. V. Lisichkin, V. V. Korol’kov, B. N. Tarasevich, I. I. Kulakova, and A. V. Karpukhin, Russ. Chem. Bull. 55, 2212 (2006).

    Article  CAS  Google Scholar 

  36. G. V. Lisichkin, I. I. Kulakova, Y. A. Gerasimov, A. V. Karpukhin, and R. Y. Yakovlev, Mendeleev Commun. 19, 309 (2009).

    Article  CAS  Google Scholar 

  37. Y. Liu, V. N. Khabashesku, and N. J. Halas, J. Am. Chem. Soc. 127, 3712 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. A. Krueger and T. Boedeker, Diamond Relat. Mater. 17, 1367 (2008).

    Article  CAS  Google Scholar 

  39. A. Krueger, Y. J. Liang, G. Jarre, and J. Stegk, J. Mater. Chem. 16, 2322 (2006).

    Article  CAS  Google Scholar 

  40. E. Duffy, D. P. Mitev, S. C. Thickett, A. T. Townsend, B. Paull, and P. N. Nesterenko, Appl. Surf. Sci. 357, 397 (2015).

    Article  CAS  Google Scholar 

  41. Z. Wahab, E. A. Foley, P. J. Pellechia, B. L. Anneaux, and H. J. Ploehn, J. Colloid Interface Sci. 450, 301 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. H. H. Zhang, Y. T. Liu, R. Wang, X. Y. Yu, X. W. Qu, and Q. X. Zhang, Chin. Chem. Lett. 22, 485 (2011).

    Article  CAS  Google Scholar 

  43. X. C. Lau, C. Desai, and S. Mitra, Solar Energy 91, 204 (2013).

    Article  CAS  Google Scholar 

  44. A. Krueger and T. Boedeker, Diamond Relat. Mater. 17, 1367 (2008).

    Article  CAS  Google Scholar 

  45. I. Cha, K. Hashimoto, K. Fujiki, T. Yamauchi, and N. Tsubokawa, Mater. Chem. Phys. 143, 1131 (2014).

    Article  CAS  Google Scholar 

  46. E. V. Basiuk, A. Santamaria-Bonfil, V. Meza-Laguna, T. Yu. Gromovoy, E. Alvares-Zauco, F. F. Contreras-Torres, J. Rizo, G. Zavala, and V. A. Basiuk, Appl. Surf. Sci. 275, 324 (2013).

    Article  CAS  Google Scholar 

  47. B. V. Spitsyn, J. L. Davidson, M. N. Gradoboev, T. B. Galushko, N. V. Serebryakova, and T. A. Karpukhina, Diamond Relat. Mater. 15, 296 (2006).

    Article  CAS  Google Scholar 

  48. D. Lang and A. Krueger, Diamond Relat. Mater. 20, 101 (2011).

    Article  CAS  Google Scholar 

  49. A.-Y. Jee and M. Lee, Curr. Appl. Phys. 9, 144 (2009).

    Article  Google Scholar 

  50. J. C. Arnault, in Novel Aspects of Diamond. Topics in Applied Physics, Ed. by N. Yang (Springer, Cham, 2015), Vol. 121, p. 85.

    Google Scholar 

  51. R. Yu. Yakovlev, I. I. Kulakova, N. B. Leonidov, and G. V. Lisichkin, Mendeleev Commun. 22, 213 (2012).

    Article  CAS  Google Scholar 

  52. A. P. Voznyakovskii, V. V. Klyubin, V. Y. Dolmatov, and L. V. Agibalova, J. Superhard Mater. 22, 58 (2000).

    Google Scholar 

  53. A. P. Voznyakovsky, T. Fujimura, V. Y. Dolmatov, and M. V. Veretennikova, J. Superhard Mater. 24 (6), 21 (2002).

    Google Scholar 

  54. A. Barras, S. Szunerits, L. Marcon, N. Monfilliette-Dupont, and R. Boukherroub, Langmuir 26, 13168 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. H. Huang, M. Liu, X. Tuo, J. Chen, L. Mao, Y. Wen, J. Tian, N. Zhou, X. Zhang, and Y. Wei, Appl. Surf. Sci. 439, 1143 (2018).

    Article  CAS  Google Scholar 

  56. I. P. Chang, K. C. Hwang, J.-A. A. Ho, C.-C. Lin, R. J.-R. Hwu, and J.-C. Horng, Langmuir 26, 3685 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. H. Huang, M. Liu, R. Jiang, J. Chen, L. Mao, Y. Wen, J. Tian, N. Zhou, X. Zhang, and Y. Wei, J. Colloid Interface Sci. 513, 198 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. D. Xu, M. Liu, Q. Zhang, Q. Huang, H. Huang, J. Tian, R. Jiang, Y. Wen, X. Zhang, and Y. Wei, Mater. Sci. Eng., C 91, 496 (2018).

    Article  CAS  Google Scholar 

  59. R. Liu, F. Zhao, X. Yu, K. Naito, H. Ding, X. Qu, and Q. Zhang, Diamond Relat.0 Mater. 50, 26 (2014).

  60. L. Li, J. L. Davidson, and C. M. Lukehart, Carbon 44, 2308 (2006).

    Article  CAS  Google Scholar 

  61. S. A. Dahoumane, M. N. Nguyen, A. Thorel, J.‑P. Boudou, M. M. Chehimi, and C. Mangeney, Langmuir 25, 9633 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. G. Zeng, M. Liu, K. Shi, C. Heng, L. Mao, Q. Wan, H. Huang, F. Deng, X. Zhang, and Y. Wei, Appl. Surf. Sci. 390, 710 (2016).

    Article  CAS  Google Scholar 

  63. J. Chen, M. Liu, Q. Huang, L. Huang, H. Huang, F. Deng, Y. Wen, J. Tian, X. Zhang, and Y. Wei, Chem. Eng. J. (Amsterdam, Neth.) 337, 82 (2018).

  64. M. R. Ayatollahi, E. Alishahi, R. S. Doagou, and S. Shadlou, Composites, Part B 43, 3425 (2012).

    Article  CAS  Google Scholar 

  65. M. H. Avazkonandeh-Gharavol, S. A. Sajjadi, S. M. Zebarjad, M. Mohammadtaheri, M. Abbasi, M. Alimardani, and K. Mossaddegh, Prog. Org. Coat. 76, 1258 (2013).

    Article  CAS  Google Scholar 

  66. A.-Y. Jee and M. Lee, Curr. Appl. Phys. 11, 1183 (2011).

    Article  Google Scholar 

  67. J.-Y. Lee and D.-S. Lim, Surf. Coat. Technol. 188–189, 534 (2004).

    Article  CAS  Google Scholar 

  68. M. L. Senyek, J. J. Kulig, and D. K. Parker, US Patent No. US6369158 B1 (2002).

  69. E. V. Sivtsov, A. I. Gostev, E. V. Parilova, A. V. Dobrodumov, and E. V. Chernikova, Polym. Sci., Ser. C 57, 110 (2015).

    Article  CAS  Google Scholar 

  70. A. N. Nesmeyanov and K. A. Kocheshkov, Methods of Organoelement Chemistry (Magnesium, Berillium, Calcium, Strontium, Barium) (Nauka, Moscow, 1963) [in Russian].

    Google Scholar 

  71. A. P. Voznyakovskii, A. V. Kalinin, and A. V. Fursenko, Sverkhtverd. Mater. 192 (4), 38 (2011).

    Google Scholar 

  72. A. P. Voznyakovskii, A. V. Kalinin, M. V. Mokeev, L. V. Agibalova, and E. N. Vlasova, Russ. J. Appl. Chem. 85, 1090 (2012).

    Article  CAS  Google Scholar 

  73. A. P. Voznyakovskii, A. V. Kalinin, L. V. Agibalova, and I. V. Shugalei, Porodorazrushayushchii Instrum., No. 17, 390 (2014).

  74. A. P. Voznyakovskii, A. V. Kalinin, and L. V. Agibalova, J. Superhard Mater. 33, 244 (2011).

    Article  Google Scholar 

  75. H. Kong, C. Gao, and D. Yan, Macromolecules 37, 4022 (2004).

    Article  CAS  Google Scholar 

  76. B. Philip, J. Xie, J. K. Abraham, and V. K. Varadan, Polym. Bull. 53, 127 (2005).

    Article  CAS  Google Scholar 

  77. T. Sainsbury, K. Erickson, D. Okawa, C. S. Zonte, J. M. J. Fréchet, and A. Zettl, Chem. Mater. 22, 2164 (2010).

    Article  CAS  Google Scholar 

  78. Q. Zhang, K. Naito, Y. Tanaka, and Y. Kagawa, Macromolecules 41, 536 (2008).

    Article  CAS  Google Scholar 

  79. X. Zhang, C. Fu, L. Feng, Y. Ji, L. Tao, Q. Huang, S. Li, and Y. Wei, Polymer 53, 3178 (2012).

    Article  CAS  Google Scholar 

  80. U. Maitra, A. Gomathi, and C. N. R. Rao, J. Exp. Nanosci 3, 271 (2008).

    Article  CAS  Google Scholar 

  81. R. Kaur, J. M. Chitanda, D. Michel, J. Maley, F. Borondics, P. Yang, R. E. Verrall, and I. Badea, Int. J. Nanomed. 7, 3851 (2012).

    CAS  Google Scholar 

  82. E. Ya. Lukevits and M. G. Voronkov, Hydrosilylation, Hydrogermylation, Hydrostannylation (Izd-vo AN Latviiskoi SSR, Riga, 1964) [in Russian].

    Google Scholar 

  83. Handbook of RAFT Polymerization, Ed. by C. Barner-Kowollik (Wiley, Weinheim, 2008).

    Google Scholar 

  84. E. V. Chernikova and E. V. Sivtsov, Polym. Sci., Ser. B 59, 117 (2017).

    Article  CAS  Google Scholar 

  85. E. V. Chernikova, P. S. Terpugova, A. A. Baskakov, A. V. Plutalova, E. S. Garina, and E. V. Sivtsov, Polym. Sci., Ser. B 52, 119 (2010).

    Article  Google Scholar 

  86. X. Li, L. Chen, Q. Li, J. Zhang, Z. Su, X. Zhang, K. Zheng, and X. Tian, RSC Adv. 6, 101941 (2016).

  87. N. W. Elshereksi, S. H. Mohamed, A. Arifin, and Z. A. M. Ishak, J. Phys. Sci. 25 (2), 15 (2014).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.Yu. Dolmatov (SKTB Technolog) for kindly furnishing the DND sample.

Funding

The small-angle X-ray scattering and differential scanning calorimetry studies were performed using the equipment of the Engineering Center at the St. Petersburg State Institute of Technology (Technical University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Sivtsov.

Additional information

Translated by K. Utegenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivtsov, E.V., Kalinin, A.V., Gostev, A.I. et al. In Situ Preparation of Polymer Nanocomposites Based on Sols of Surface-Modified Detonation Nanodiamonds by Classical and Controlled Radical Polymerization. Polym. Sci. Ser. B 62, 734–749 (2020). https://doi.org/10.1134/S1560090420050139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090420050139

Navigation