Skip to main content
Log in

Fertility of Rare-Metal Peraluminous Granites and Formation Conditions of Tungsten Deposits

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The tungsten distribution in rocks of the Kukulbei Complex in eastern Transbaikal region results in a high potential of rare-metal peraluminous granites (RPG) for W mineralization and displays a different behavior of W in Li–F and “standard” RPG. These subtypes differ in the behavior of W in melt, spatial localization of mineralization, and the timing of wolframite crystallization relative to the age of the parental granitic rocks. The significant of W concentration is assumed to be due to fractionation of the Li–F melt; however, wolframite mineralization in Li–F enriched granite is not typical in nature. The results of experiments and our calculations of W solubility in granitic melt show that wolframite hardly ever crystallizes directly from melt; it likely migrates in the fluid phase and is then removes from the magma chamber to the host rocks, where secondary concentration takes place in exocontact greisens and quartz–cassiterite–wolframite veins. At the same time, the isotopic age of accessory wolframite (139.5 ± 2.1 Ma) within the Orlovka massif of Li–F granite is close to the formation age of the massif (140.6 ± 2.9 Ma). A different W behavior is recorded in the RPG subtype with a low lithium and fluorine concentration, exemplified by the Spokoininsky massif. There is no significant W gain in the melt. All varieties of wolframite mineralization in the Spokoininsky massif are derived from greisens, veins, and pegmatoids yielding the same crystallization ages (139.5 ± 1.1 Ma), which are 0.9–1.8 Ma later (taking into account the mean-square weighted deviation) than the Spokoininsky granite formation (144.5 ± 1.4 Ma). Perhaps this period corresponds to the time of transition from the magmatic stage to hydrothermal alteration. Comparison of the isotope characteristics (Rb–Sr and Sm–Nd isotope systems) of rocks and the associated ore minerals (wolframite, cassiterite) from all examined deposits shows a depletion in εNd values for ore minerals relative to the rock and the opposite behavior for the intial Sr isotope ratios. This may indicate the specific nature of ore matter, where the effect of the juvenile component is definitely expressed. Our geochronological results show that tantalum and tungsten mineralization took place within a narrow age interval, almost synchronously with the crystallization of associated granites. The coeval development of peraluminous magmatism enriched in lithophile rare elements and volatiles with ore complexes located in different structural settings and separated by a considerable distance from each other (up to 500 km) suggests a regional and deep-seated magma source. Rifting and increased thermal flux from the mantle, manifestations of which have been recorded during this period in the territory, may be a deep-seated process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abushkevich, V.S. and Syritso, L.F., Izotopno-geokhimicheskaya model' formirovaniya Li–F granitov Orlovskogo massiva v Vostochnom Zabaikal’e (Isotope-Geochemical Model of the Formation of the Li–F Granites of the Orlovka Massif in Eastern Transbaikalia), St. Petersburg: Nauka, 2007.

    Google Scholar 

  • Abushkevich, V.S., Badanina, E.V., and Syritso, L.F., Wolframite and cassiterite: age of forming and isotope characteristics Sr and Nd, The 20-th General Meeting of the International Mineralogical Association, Budapest, 2010.

    Google Scholar 

  • Andreeva, O.A., Magmatic Evolution of the Chaibanshan’ Tyan’chi Volcano (Northeastern China): Evidence from Inclusions in Mineral-Forming Medium, Extended Abstract of Cand. Sci. (Geol.-Min.) Dissertation, Moscow, 2017.

    Google Scholar 

  • Anisimova, I.V., Abushkevich, V.S., Syritso, L.F., et al., U–Pb and Pb–Pb study of tantalite–nontraditional mineral geochronometer of rare-metal granites (Orlovka Deposit, Eastern Transbaikalia), Trudy XX simpoziuma po geokhimii izotopov (Proceedings of 20th Symposium on Isotope Geochemistry), Moscow: IGEM RAN, 2013, pp. 30–32.

    Google Scholar 

  • Badanina, E.V., First data on tungsten content in highly specialized granitic melts: evidence from study of melt inclusions in quartz, Voprosy geokhimii i tipomorfizma mineralov (Problems of Geochemistry and Mineral typomorphism), St. Petersburg: S.-Petersb. Univ., 1998, vol. 5, pp. 42–49.

    Google Scholar 

  • Badanina, E.V., Syritso, L.F., Volkova, E.V., et al., Composition of Li–F granite melt and its evolution during the formation of the ore-bearing Orlovka massif in Eastern Transbaikalia, Petrology, 2010, vol. 18, no. 2, pp. 131–157.

    Article  Google Scholar 

  • Barabanov, V. F., Vol’framovye mestorozhdeniya (Tungsten Deposits), St. Petersburg: St.-Petersb. Gos. Univ., 1996, vol. 3, part 1.

    Google Scholar 

  • Barabanov, V.F., Syritso, L.F., Dolgushina, I.S., et al., Vol’framovye mestorozhdeniya Zabaikal’ya (Tungsten deposits of Transbaikalia), St. Petersburg: St.-Petersb. Univ., 1996, vol. 1, part 2.

    Google Scholar 

  • Beskin, S.M., Grebennikov, A.M., and Matias, V.V., Khangilai granitic pluton and related Orlovka tantalum deposit, Transbaikalia, Petrologiya, 1994, vol. 2, pp. 68–87.

    Google Scholar 

  • Beus A.A., Severov E.A., Sitnin, A.A., et al., Al’bitizirovannye i greizenizirovannye granity (apogranity) (Albitized and Greisenized Granites (Apogranites)) Moscow: AN SSSR, 1962.

    Google Scholar 

  • Che Xu Dong, R.L. Linnen, Ru Cheng Wang, et al., Tungsten solubility in evolved granitic melts: an evaluation of magmatic wolframite, Geochim. Cosmochim. Acta, 2013, vol. 106, pp. 84–98.

    Article  Google Scholar 

  • Chevychelov, V. Yu., Influence of composition of granitoid melts on the behavior of ore metals (Pb, Zn, W, Mo) and petrogenic components in the melt–aqueous fluid system, Eksperimental’noe i teoreticheskoe modelirovanie protsessov mineraloobrazovaniya (Experimental and Theoretical Modeling of Mineral Formation), Moscow: Nauka, 1998, pp. 118–130.

    Google Scholar 

  • Chevychelov, V.Yu., Distribution of Volatiles, Rock-Forming and Ore Components in Magmatic Systems: Experimenal Studies, Extended Abstract of Doctoral (Geol.-Min) Dissertation, Chernogolovka: IEM RAN, 2013.

    Google Scholar 

  • Dolgopolova, A., Seltmann, R., and Stanley, C., Isotope systematics of ore-bearing and host rocks of the Orlovka–Spokoinoe mining district, eastern Transbaikalia, Russia, Mineral Deposit Research: Meeting the Global Challenge, Proceedings of the Eighth Biennial SGA Meeting, Bejing, China, 2005, Jingwen Mao and Frank P. Bierlein, Eds., Springer, 2005, vol. 1, pp. 747–751.

    Google Scholar 

  • Gaivoronskii, B.A., Bukukinskoe deposit, Mestorozhdeniya Zabaikal’ya (Deposits of Transbaikalia), Chita: ChIPR SORAN, 1995, vol. 1, book 1, pp. 146–148.

    Google Scholar 

  • Geologiya i zakonomernosti razmeshcheniya endogennykh mestorozhdenii Zabaikal’ya (Geology and Tendencies in Distribution of Endogenous Deposits of Transbaikalia), Moscow, 1970.

  • Gordienko, I.V., Metallogeny of different geodynamic settings of the Mongol–Okhotsk region, Geol. Mineral-Syr’ev. Res. Sibiri, 2014, no. 3, pp. 7–13.

    Google Scholar 

  • Gramenitskii E.N., Shchekina T.I., and Devyatova, V.N., Fazovye otnosheniya vo ftorsoderzhashchikh granitnoi i nefelin-sienitovoi sistemakh i raspredelenie elementov mezhdu fazami (Phase Relations in Fluorine-Bearing Granitic and Nepheline–Syenite Systems and Distribution of Elements between Phases), Moscow: GEOS, 2005.

    Google Scholar 

  • Hofman, A.W., Mantle geochemistry: the message from oceanic volcanism, Nature, 1997, vol. 385, no. 76, pp. 219–229.

    Article  Google Scholar 

  • Ivanova, G.F., Geokhimicheskie usloviya obrazovaniya vol’framitovykh mestorozhdenii (Geochemical Conditions of formation of Wolframite Deposits), Moscow: Nauka, 1972. 195 s.

    Google Scholar 

  • Ivanova, G.F., Geochemical features of tungsten deposits of Mongolia, Geol. Rud. Mestorozhd., 1974, no. 6, pp. 45–53.

    Google Scholar 

  • Ivanova, G.F., Geochemical Conditions of Formation of Tungsten Deposits, Extended Abstract of Doctoral (Geol.-Min) Dissertation, Moscow: GEOKhI RAN, 1990.

    Google Scholar 

  • Keppler, H. and Wyllie, P.J., Partitioning of Cu, Sn, Mo, W, U and Th between melt and aqueous fluid in the systems haplogranite–H2O–HCl and haplogranite–H2O–Hf, Contrib. Mineral. Petrol., 1991, vol. 109, pp. 139–150.

    Article  Google Scholar 

  • Kostitsyn, Yu.A., Zaraisky, G.P., Aksyuk, A.M., et al., Rb–Sr evidence for the genetic links between biotite and Li–F granites: an example of the Spokoinoe, Orlovka, and Etyka deposits, Eastern Transbaikalia, Geochem. Int., 2004, vol. 42, no. 9, pp. 822–829.

    Google Scholar 

  • Kotel’nikova, Z.A. and Kotel’nikov, A.R., Unusual phase transformations in synthetic NaF-bearing fluid inclusions in quartz, Dokl. Earth. Sci., 2011, vol. 439, pp. 967–969.

    Article  Google Scholar 

  • Kovalenko, V.I., Petrologiya i geokhimiya redkometal’nykh granitoidov (Petrology and Geochemistry of Rare-Metal Granites), Novosibirsk: Nauka, 1977.

    Google Scholar 

  • Kovalenko, V.I., Kostitsyn, Yu.A., Yarmolyuk, V.V., et al., Magma sources and the isotopic (Sr and Nd) evolution of Li–F rare-metal granites, Petrology, 1999, vol. 7, no. 4, pp. 383–409.

    Google Scholar 

  • Kovalenko, V.I., Yarmolyuk, V.V., Tsareva, G.M., et al., Influence of Li–F rare-metal granitic magma differentiation on the initial strontium isotopic composition with reference to the Yugodzyr Massif, Mongolia, Dokl. Akad. Nauk SSSR, 1996, vol. 351, pp. 85–87.

    Google Scholar 

  • Kozlov, V.D., Geokhimiya i rudonosnost' granitoidov redkometal’nykh provintsii (Geochemistry and Ore Potential of the Granitoids of Rare-Metal Provinces), Moscow: Nauka, 1985.

    Google Scholar 

  • Kozlov, V.D., Geochemistry and petrology of granitoids of the Unda Complex, Petrologiya, 2002, vol. 7, no. 5, pp. 96–99.

    Google Scholar 

  • Kozlov, V.D. and Svadkovskaya, L.N., Petrokhimiya, geokhimiya i rudonosnost' granitoidov Tsentral’nogo Zabaikal’ya (Petrochemistry, Geochemistry, and Ore Potential of the Granitoids of Central Transbaikalia), Novosibirsk: Nauka, 1977.

    Google Scholar 

  • Linnen, R.L. and Keppler, H., Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crust, Contrib. Mineral. Petrol., 1997, vol. 128, pp. 213–227.

    Article  Google Scholar 

  • Linnen, R.L. and Cuney, M., Granite-related rare-element deposits and experimental contraints of Ta–Nb–W–Sn–Zr–Hf mineralization, Rare-Element Geochemistry and Mineral Deposits, Linnen, R.L., Ed., Geol. Ass. Canada Short Course Notes, 2005, vol. 18, pp. 45–68.

    Google Scholar 

  • Malinovsky, E.P., Strukturnye usloviya formirovaniya zhil’nykh vol’framitovykh mestorozhdenii (Structural Control of the Formation of Wolframite Deposits), Moscw: Nauka, 1965.

    Google Scholar 

  • Marin, Yu. B. and Beskin, S. M., Principles of recognition and systematic of Phanerozoic granitoid formations and associated mineral deposits, Zap. Leningr. Gorn. Inst., 1983, vol. 95, pp. 32–40.

    Google Scholar 

  • Matveeva, S.S., Spasennykh, M.Yu., Sushchevskaya, G.M., et al., Geochemical model of the formation of the Spokoininsk tungsten deposit (Eastern Transbaikal region, Russia), Geol. Ore Deposits, 2002, vol. 44, no. 2, pp. 111–131.

    Google Scholar 

  • Ob"yasnitel’naya zapiska k Gosudarstvennoi geologicheskoi karte Rossiiskoi Federatsii. Masshtab 1: 1000000 (tret’e pokolenie). Seriya Aldano-Zabaikal’skaya. List M-50–Borzya (Explanatory Note to the State Geological Map of the Russian Federation on a Scale 1: 1000000 (3rd Generation). Aldan–Transbaikalian Series. Sheet M-50–Borzya), St. Petersburg: Kartograf. Fabr. VSEGEI, 2010.

  • Peretyazhko, I.S., Zagorskii, V.E., Tsareva, E.A., et al., Immiscibility of calcium fluoride and aluminosilicate melts in ongonite from the Ary-Bulak intrusion, Eastern Transbaikal region, Dokl. Earth Sci., 2007, vol. 413, pp. 315–320.

    Article  Google Scholar 

  • Potap’ev, V.V., Inner structure and ore potential of Mesozoic massif, Granitoidnye massivy Sibiri i orudenenie (Granitic Massifs of Siberia and Mineralization), Novosibirsk: Nauka, 1971, pp. 5–88.

    Google Scholar 

  • Reif, F.G., Rudoobrazuyushchii potentsial granitov i usloviya ego realizatsii (Ore-Forming Potential of Granites and Conditions of its Implementation), Moscow: Nauka, 1990.

    Google Scholar 

  • Rundkvist, D. V., Denisenko, V. K., Pavlova, I. G., Greizenovye mestorozhdeniya (Greisen Deposits), Moscow: Nedra, 1971.

    Google Scholar 

  • Schaeffer, B., Frischknecht, R., Gunther, D., et al., Determination of trace-element partitioning between fluid and melt using LA-ICP-MS analysis of synthetic fluid inclusions in glass, Eur. J. Mineral., 1999, vol. 11, pp. 415–426.

    Article  Google Scholar 

  • Smirnov, S.S., Ocherk metallogenii Vostochnogo Zabaikal’ya (Essay on Metallogeny of Eastern Transbaikalia), Moscow, 1944.

    Google Scholar 

  • Stupak, D.F., Prokofiev, V.Yu., and Zaraiskii, G.P., Formation conditions of the ore-bearing lithiumfluoride granites of the Shumilov tungsten deposit, Central Transbaikalia, Petrology, 2008, vol. 16, pp. 312–317.

    Article  Google Scholar 

  • Syritso, L. F., Mezozoiskie granitoidy Vostochnogo Zabaikal’ya i problemy redkometal’nogo rudoobrazovaniya (Mesozoic Granitoids of Eastern Transbaikalian and Problems of Rare-Metal Ore Formation), St. Petersburg: St. Petersb. Univ., 2002.

    Google Scholar 

  • Syritso, L.F., Dolgushina, I.S., Mikhailov, V.V., et al., Dikes of the Spokoinoe deposit, Eastern Transbaikalia: example and reasons for extreme tungsten accumulation, Vopr. Geokhim. Tipomorf. Mineral., 1998, vol. 5, pp. 48–62.

    Google Scholar 

  • Syritso, L.F., Tabuns, E.V., Volkova, E.V., Badanina, E.V., and Vysotsky, Yu.V., Model for the genesis of Li–F Granites in the Orlovka Massif, Eastern Transbaikalia, Petrology, 2001, vol. 9, no. 3, pp. 268–289.

    Google Scholar 

  • Tauson, L.V., Geokhimicheskie tipy i potentsial’naya rudonosnost' granitoidov (Geochemical Types and Ore Potential of Granitoids), Moscow: Nauka, 1977.

    Google Scholar 

  • Tauson, L. V., Antipin, V. S., Zakharov, M. N., et al., Geokhimiya mezozoiskikh latitov Zabaikal’ya (Geochemistry of Mesozoic Latites of Transbaikalia), Novosibirsk: Nauka, 1984.

    Google Scholar 

  • Taylor, S.R. and McLennan, S.M., The geochemical evolution of the continental crust, Rev. Geophys., 1995, vol. 33, pp. 241–265.

    Article  Google Scholar 

  • Thomas, R., Davidson, P., and Badanina, E.V., A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite, East Transbaikalia, Russia: implications for pegmatite-forming melt systems, Mineral. Petrol., 2009, vol. 96, pp. 129–140.

    Article  Google Scholar 

  • Veksler, I.V., Thomas, R., and Schmidt, C., Experimental evidence of three coexisting immiscible fluids in synthetic granitic pegmatite, Am. Mineral., 2002, vol. 87, pp. 775–779.

    Article  Google Scholar 

  • Vinogradov, A.P., Average contents of chemical elements in major types of igneous rocks, Geokhimiya, 1962, no. 7, pp. 555–571.

    Google Scholar 

  • Yarmolyuk, V.V. and Kovalenko, V.I., Deep Geodynamics and Mantle Plumes: Their Role in the Formation of the Central Asian Fold Belt, Petrology, 2003, vol. 11, no. 6, pp. 504–531.

    Google Scholar 

  • Yarmolyuk, V.V. and Kuz’min, V.I., Late Paleozoic and Early Mesozoic rare-metal magmatism of Central Asia: stages, provinces, and formation settings, Geol. Ore Deposits, 2012, vol. 54, no. 5, pp. 313–333.

    Article  Google Scholar 

  • Zajacz, Z., Pettke, T., and Guillong, M., Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 2169–2197.

    Article  Google Scholar 

  • Zaraisky, G.P., Conditions of formation of rare-metal deposits related to granitoid magmatism, Smirnovskii sbornik-2004, Moscow: Fond im. Ak. V.I. Smirnova, 2004, pp. 105–192.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Badanina.

Additional information

Original Russian Text © L.F. Syritso, E.V. Badanina, V.S. Abushkevich, E.V. Volkova, A.V. Terekhov, 2018, published in Geologiya Rudnykh Mestorozhdenii, 2018, Vol. 60, No. 1, pp. 38–56.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syritso, L.F., Badanina, E.V., Abushkevich, V.S. et al. Fertility of Rare-Metal Peraluminous Granites and Formation Conditions of Tungsten Deposits. Geol. Ore Deposits 60, 33–51 (2018). https://doi.org/10.1134/S1075701518010063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701518010063

Keywords

Navigation