Skip to main content
Log in

Multicomponent Synthesis of 1,3-Bis[(alkylsulfanyl)methyl]-1,3,5-triazinan-2-ones

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Previously unknown 5-alkyl-1,3-bis[(alkylsulfanyl)methyl]-1,3,5-triazinan-2-ones have been syn­thesized by three-component condensation of available N,N′-bis[(alkylsulfanyl)methyl]ureas with formaldehyde and primary amines in ethanol in the presence of sodium hydroxide or triethylamine. A one-pot four-component procedure has been proposed for the synthesis of the title compounds via successive thiomethylation of urea with a mixture of formaldehyde and alkanethiol and cycloaminomethylation of intermediate N,N′-bis[(alkyl­sulfanyl)methyl]ureas with formaldehyde and alkylamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Ghosh, A.K. and Brindisi, M., J. Med. Chem., 2020, vol. 63, p. 2751. https://doi.org/10.1021/acs.jmedchem.9b01541

    Article  CAS  PubMed  Google Scholar 

  2. Lalpara, J.N., Vachhani, M.D., Hadiyal, S.D., Gos­wami, S., and Dubal, G.G., Russ. J. Org. Chem., 2021, vol. 57, p. 241. https://doi.org/10.1134/S1070428021020159

    Article  CAS  Google Scholar 

  3. Cusack, K.P., Scott, B., Arnold, L.D., and Erics­son, A.M., Int. Patent Appl. Pub. no. WO2001057008, 2001; Chem. Abstr., 2001, vol. 135, no. 152801.

  4. Boyer, S., Dumas, J., Phillips, B., Scott, W.J., Smith, R.A., Chen, J., James, B., and Wang, G., Int. Patent Appl. Pub. no. WO 2004078746 (2004); Chem. Abstr., 2004, vol. 141, no. 260780.

  5. Patron, A., Tachdjian, C., Servant, G., and Ditschun, T., US Patent Appl. Pub. no. 20160376263, 2016; Chem. Abstr., 2016, vol. 166, no. 116759.

  6. Aoki, K., Shida, T., Kanda, Y., Satake, K., Yamazaki, S., and Chida, T., US Patent no. 4624698, 1986; Chem. Abstr., 1986, vol. 104, no. 186456.

  7. Adams, S.R. and Fowles, A.M., Int. Patent Appl. Pub. no. WO2020254104, 2020; Chem. Abstr., 2020, vol. 174, no. 186995.

  8. Laxminarayana, E., Kumar, M.R., Ramesh, D., and Chary, M.T., Org. Chem.: Indian J., 2010, vol. 6, p. 296.

    CAS  Google Scholar 

  9. Yata, M.R., Kunduru, R.R., Boche, S., and Talagada­divi, R.P., Int. J. Res. Pharm. Chem., 2014, vol. 4, p. 681.

    CAS  Google Scholar 

  10. Guo, Y., Zhang, M., Liu, Z., Zhao, C., Lu, H., Zheng, L., and Li, Y.C., ACS Omega, 2020, vol. 5, p. 11342. https://doi.org/10.1021/acsomega.0c00303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zheng, H., Wang, G., Fu, S., Wu, L., and Zhang, X., CN Patent no. 105541419, 2016; Chem. Abstr., 2016, vol. 164, no. 601609.

  12. Han, S., Siegel, D.S., Morrison, K.C., Hergenrother, P.J., and Movassaghi, M., J. Org. Chem., 2013, vol. 78, p. 11970. https://doi.org/10.1021/jo4020112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Movassaghi, M. and Hergenrother, P.J., US Patent Appl. Pub. no. 20150080405, 2015; Chem. Abstr., 2015, vol. 162, no. 438095.

  14. Pearson, W.H., Lee, I.Y., Mi, Y., and Stoy, P., J. Org. Chem., 2004, vol. 69, p. 9109. https://doi.org/10.1021/jo048917u

    Article  CAS  PubMed  Google Scholar 

  15. Angle, S.R., Fevig, J.M., Knight, S.D., Marquis, R.W., Jr., and Overman, L.E., J. Am. Chem. Soc., 1993, vol. 115, p. 3966. https://doi.org/10.1021/ja00063a016

    Article  CAS  Google Scholar 

  16. Knight, S.D., Overman, L.E., and Pairaudeau, G., J. Am. Chem. Soc., 1995, vol. 117, p. 5776. https://doi.org/10.1021/ja00126a017

    Article  CAS  Google Scholar 

  17. Knapp, S. and Hale, J.J., J. Org. Chem., 1993, vol. 58, p. 2650. https://doi.org/10.1021/jo00062a003

    Article  CAS  Google Scholar 

  18. Nilsson, B.L. and Overman, L.E., J. Org. Chem., 2006, vol. 71, p. 7706. https://doi.org/10.1021/jo061199m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Knapp, S., Hale, J.J., Bastos, M., and Gibson, F.S., Tetrahedron Lett., 1990, vol. 31, p. 2109. https://doi.org/10.1016/0040-4039(90)80084-Y

    Article  CAS  Google Scholar 

  20. Knapp, S., Hale, J.J., Bastos, M., Molina, A., and Chen, K.Y., J. Org. Chem., 1992, vol. 57, p. 6239. https://doi.org/10.1021/jo00049a036

    Article  CAS  Google Scholar 

  21. Shimizu, L.S., Salpage, S.R., and Korous, A.A., Acc. Chem. Res., 2014, vol. 47, p. 2116. https://doi.org/10.1021/ar500106f

    Article  CAS  PubMed  Google Scholar 

  22. Dawn, S., Dewal, M.B., Sobransingh, D., Paderes, M.C., Wibowo, A.C., Smith, M.D., Krause, J.A., Pellechia, P.J., and Shimizu, L.S., J. Am. Chem. Soc., 2011, vol. 133, p. 7025. https://doi.org/10.1021/ja110779h

    Article  CAS  PubMed  Google Scholar 

  23. Roy, K., Wang, C., Smith, M.D., Pellechia, P.J., and Shimizu, L.S., J. Org. Chem., 2010, vol. 75, p. 5453. https://doi.org/10.1021/jo1009596

    Article  CAS  PubMed  Google Scholar 

  24. Dawn, S., Salpage, S.R., Smith, M.D., Sharma, S.K., and Shimizu, L.S., Inorg. Chem. Commun., 2012, vol. 15, p. 88. https://doi.org/10.1016/j.inoche.2011.09.045

    Article  CAS  Google Scholar 

  25. Qin, L., Hu, B., Neumann, K.D., Linstad, E.J., Mc­Cauley, K., Veness, J., Kempinger, J.J., and Di­Magno, S.G., Eur. J. Org. Chem., 2015, vol. 2015, no. 27, p. 5919. https://doi.org/10.1002/ejoc.201500986

    Article  CAS  Google Scholar 

  26. Chen, X., Fritz, A., Werner, R.A., Nose, N., Yagi, Y., Kimura, H., Rowe, S.P., Koshino, K., Decker, M., and Higuchi, T., Mol. Imaging Biol., 2020, vol. 22, p. 602. https://doi.org/10.1007/s11307-019-01407-5

    Article  CAS  PubMed  Google Scholar 

  27. Makhloufi, A., Frank, W., and Ganter, C., Organo­metallics, 2012, vol. 31, p. 2001. https://doi.org/10.1021/om201275z

    Article  CAS  Google Scholar 

  28. Han, S., Siegel, D.S., and Movassaghi, M., Tetrahedron Lett., 2012, vol. 53, p. 3722. https://doi.org/10.1016/j.tetlet.2012.04.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Antonova, M.M., Baranov, V.V., and Kravchenko, A.N., Chem. Heterocycl. Compd., 2015, vol. 51, p. 395. https://doi.org/10.1007/s10593-015-1716-31016

    Article  CAS  Google Scholar 

  30. Yao, H., Lin, G., Yin, J., Wu, H., Neisser, M., and Dammel, R., US Patent Appl. Pub. no. 2010/0009297, 2010; Chem. Abstr., 2010, vol. 152, no. 170086.

  31. Palmer, J.T., Lunnis, C.J., Offermann, D.A., Axford, L.C., Blair, M., Mitchell, D., Palmer, N., Steele, C., Atherall, J., Watson, D., Haydon, D., Czaplewski, L., Davies, D., and Collins, I., US Patent Appl. Pub. no. 2012/0088750, 2012; Chem. Abstr., 2012, vol. 156, no. 533871.

  32. Palmer, J.T., Pitt, G.R.W., Axford, L.C., and Davies, D., Int. Patent Appl. Pub. no. WO2013138860, 2013; Chem. Abstr., C.A. 2013, 159, 546792.

  33. Jeyachandran, M., Ramesh, P., Sriram, D., Senthil­kumar, P., and Yogeeswari, P., Bioorg. Med. Chem. Lett., 2012, vol. 22, p. 4807. https://doi.org/10.1016/j.bmcl.2012.05.054

    Article  CAS  PubMed  Google Scholar 

  34. Xiong, H., Kang, J., Woods, J.M., McCauley, J.P., Jr., Koether, G.M., Albert, J.S., Hinkley, L., Li, Y., Gadient, R.A., and Simpson, T.R., Bioorg. Med. Chem. Lett., 2011, vol. 21, p. 1896. https://doi.org/10.1016/j.bmcl.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  35. Ma, H.-J., Li, Y.-H., Zhao, Q.-F., Zhang, T., Xie, R.-L., Mei, X.-D., and Ning, J., J. Agric. Food Chem., 2010, vol. 58, p. 4356. https://doi.org/10.1021/jf9042166

    Article  CAS  PubMed  Google Scholar 

  36. Yakupova, L.R., Baeva, L.A., and Safiullin, R.L., Kinet. Catal., 2021, vol. 62, p. 56. https://doi.org/10.1134/S0023158421010134

    Article  Google Scholar 

  37. Anpilogova, G.R., Baeva, L.A., Nugumanov, R.M., Fatykhov, A.A., and Murinov, Yu.I., Russ. J. Inorg. Chem., 2020, vol. 65, p. 106. https://doi.org/10.1134/S0036023620010027

    Article  CAS  Google Scholar 

  38. Patil, P.C. and Luzzio, F.A., J. Org. Chem., 2016, vol. 81, p. 10521. https://doi.org/10.1021/acs.joc.6b01280

    Article  CAS  PubMed  Google Scholar 

  39. Shen, T., Yuan, Y., Song, S., and Jiao, N., Chem. Commun., 2014, vol. 50, p. 4115. https://doi.org/10.1039/c4cc00401a

    Article  CAS  Google Scholar 

  40. Zhang, J. and Ciufolini, M.A., Org. Lett., 2009, vol. 11, p. 2389. https://doi.org/10.1021/ol900455m

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, J., Polishchuk, E.A., Chen, J., and Ciufo­lini, M.A., J. Org. Chem., 2009, vol. 74, p. 9140. https://doi.org/10.1021/jo9018705

    Article  CAS  PubMed  Google Scholar 

  42. Matsuzaki, K., Furukawa, T., Tokunaga, E., Matsu­moto, T., Shiro, M., and Shibata, N., Org. Lett., 2013, vol. 15, p. 3282. https://doi.org/10.1021/ol4013102

    Article  CAS  PubMed  Google Scholar 

  43. McCormick, L.J., McDonnell-Worth, C., Platts, J.A., Edwards, A.J., and Turner, D.R., Chem. Asian J., 2013, vol. 8, p. 2642. https://doi.org/10.1002/asia.201300530

    Article  CAS  PubMed  Google Scholar 

  44. Ramsh, S.M., Hamoud, F., and Khrabrova, E.S., Izv. Sankt-Peterb. Gos. Tekhnol. Inst., 2019, no. 49, p. 78. https://doi.org/10.36807/1998-9849-2019-49-75-78-86

    Article  Google Scholar 

  45. Kovalenko, A.L., Serov, Yu.V., Tselinskii, I.V., and Nikonov, A.A., Zh. Org. Khim., 1991, vol. 27, p. 2388.

    CAS  Google Scholar 

  46. Khairullina, R.R., Geniyatova, A.R., Ibragimov, A.G., and Dzhemilev, U.M., Russ. J. Org. Chem., 2013, vol. 49, p. 904. https://doi.org/10.1134/S1070428013060171

    Article  CAS  Google Scholar 

  47. Khairullina, R.R., Geniyatova, A.R., Meshcheryako­va, E.S., Khalilov, L.M., Ibragimov, A.G., and Dzhemi­lev, U.M., Russ. J. Org. Chem., 2015, vol. 49, p. 904. https://doi.org/10.1134/S1070428013060171

    Article  CAS  Google Scholar 

  48. Baeva, L.A., Anpilogova, G.R., Parfenova, M.A., Nugumanov, R.M., Fatykhov, A.A., and Lyapina, N.K., Russ. J. Appl. Chem., 2014, vol. 87, p. 194. https://doi.org/10.1134/S1070427214020128

    Article  CAS  Google Scholar 

  49. Keil, B., Herout, V., Hudlicky, M., Ernest, I., Pro­tiva, M., Komers, J.G.R., and Moravek, J., Laboratorni Technika Organicke Chemie, Keil, B., Ed., Praha: Československe Academie, 1963. Translated under the title Laboratornaya tekhnika organicheskoi khimii, Moscow: Mir, 1966, p. 592.

  50. Teitze, L.F. and Eicher, T., Reaktionen und Synthesen im organisch-chemischen Praktikum und Forschungs­laboratorium, Stuttgart: Georg Thieme, 1991, 2nd ed. Translated under the title Preparativnaya organicheskaya khimiya, Moscow: Mir, 1999, p. 156.

Download references

ACKNOWLEDGMENTS

The spectral and analytical data were obtained using the equipment of the Chemistry joint center (Ufa Institute of Chemistry, Russian Academy of Sciences) and Agidel regional joint center (Ufa Federal Research Center, Russian Academy of Sciences).

Funding

This study was performed in the framework of state assignment no. AAAA-A119-119011790021-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Baeva.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2021, Vol. 57, No. 12, pp. 1727–1735 https://doi.org/10.31857/S0514749221120077.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baeva, L.A., Biktasheva, L.F., Nugumanov, T.R. et al. Multicomponent Synthesis of 1,3-Bis[(alkylsulfanyl)methyl]-1,3,5-triazinan-2-ones. Russ J Org Chem 57, 1948–1954 (2021). https://doi.org/10.1134/S1070428021120071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021120071

Keywords:

Navigation