Skip to main content
Log in

2-Acylcycloalkanones in Organic Synthesis

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The review systematizes published data on the use of 2-acylcycloalkanones in organic synthesis. The data are arranged in accordance with the type of products formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Shokova, E.A., Kim, J.K., and Kovalev, V.V., Russ. J. Org. Chem., 2015, vol. 51, p. 755. https://doi.org/10.1134/S1070428015060019

    Article  CAS  Google Scholar 

  2. Bensa, D., Brunel, J.-M., Buono, G., and Rodriguez, J., Synlett, 2001, vol. 2001, p. 715. https://doi.org/10.1055/s-2001-13369

    Article  Google Scholar 

  3. Villano, R. and Scettri, A., Synthesis, 2005, vol. 2005, p. 757. https://doi.org/10.1055/s-2005-861810

    Article  CAS  Google Scholar 

  4. Reddy, Ch.R.V. and Verkade, J.G., J. Org. Chem., 2007, vol. 72, p. 3093. https://doi.org/10.1021/jo062505z

    Article  PubMed  CAS  Google Scholar 

  5. Basle, O., Porsel, S., Ladeira, S., Bouhadir, G., and Bourissou, D., Chem. Commun., 2012, vol. 48, p. 4495. https://doi.org/10.1039/C2CC30399J

    Article  CAS  Google Scholar 

  6. Tateiwa, J. and Hosomi, A., Eur. J. Org. Chem., 2001, vol. 2001, p. 1445. https://doi.org/10.1002/1099-0690(200104)2001:8<1445::AID-EJOC1445>3.0.CO;2-Q

    Article  Google Scholar 

  7. Mori, Y., Kakumoto, K., Manabe, K., and Kobayashi, S., Tetrahedron Lett., 2000, vol. 41, p. 3107. https://doi.org/10.1016/S0040-4039(00)00319-1

    Article  CAS  Google Scholar 

  8. Drabina, P., Broz, B., Sedlak, M., and Padelkova, Z., J. Organomet. Chem., 2011, vol. 696, p. 971. https://doi.org/10.1016/j.jorganchem.2010.10.031

    Article  CAS  Google Scholar 

  9. Ding, R., Katebzadeh, K., Roman, L., Berquist, K.-E., and Lindström, U.M., J. Org. Chem., 2006, vol. 71, p. 352. https://doi.org/10.1021/jo051540n

    Article  PubMed  CAS  Google Scholar 

  10. Aplander, K., Ding, R., Lindström, U., Wennerberg, J., and Schultz, S., Angew. Chem., Int. Ed., 2007, vol. 46, p. 4543. https://doi.org/10.1002/anie.200700560

    Article  CAS  Google Scholar 

  11. Aplander, K., Ding, R., Krasavin, M., Lindstrom, U., Marcus, U., and Wennerberg, J., Eur. J. Org. Chem., 2009, vol. 2009, p. 810. https://doi.org/10.1002/ejoc.200800922

    Article  CAS  Google Scholar 

  12. Yadav, J.S., Geetha, V., and Reddy, B.V.S., Synth. Commun., 2002, vol. 32, p. 3519. https://doi.org/10.1081/SCC-120014790

    Article  CAS  Google Scholar 

  13. Smitha, G., Patnaik, S., and Reddy, C.S., Synthesis, 2005, vol. 2005, p. 711. https://doi.org/10.1055/s-2005-861837

    Article  CAS  Google Scholar 

  14. Mori, K., Oshiba, M., Hara, T., Mizugaki, T., Ebitani, K., and Kaneda, K., Tetrahedron Lett., 2005, vol. 46, p. 4283. https://doi.org/10.1016/j.tetlet.2005.04.099

    Article  CAS  Google Scholar 

  15. Shimizu, K., Miyagi, M., Kanno, T., Kodama, T., and Kitayama, Y.,Tetrahedron Lett., 2003, vol. 44, p. 7421. https://doi.org/10.1016/j.tetlet.2003.08.048

    Article  CAS  Google Scholar 

  16. Shimizu, K., Miyagi, M., Kanno, T., and Kitayama, Y., J. Catal., 2005, vol. 229, p. 470. https://doi.org/10.1016/j.jcat.2004.11.030

    Article  CAS  Google Scholar 

  17. Vasiloiu, M., Gaertner, P., and Bica, K., Sci. Chin. Chem., 2012, vol. 55, p. 1614. https://doi.org/10.1007/s11426-012-4657-z

    Article  CAS  Google Scholar 

  18. Yadav, J.S., Reddy, B.V.S., Baishya, G., and Venkat, N.A.,Chem. Lett., 2005, vol. 34, p. 102. https://doi.org/10.1246/cl.2005.102

    Article  CAS  Google Scholar 

  19. Yao, X. and Li, C.-J., J. Org. Chem., 2005, vol. 70, p. 5752. https://doi.org/10.1021/jo050570n

    Article  PubMed  CAS  Google Scholar 

  20. Shibatomi, K., Nakahashi, T., and Uozumi, Y., Synlett, 2000, vol. 2000, p. 1643. https://doi.org/10.1055/s-2000-7951

    Article  Google Scholar 

  21. Bensa, D., Constantieux, Th., and Rodriguez, J., Synthesis, 2004, vol. 2004, p. 923. https://doi.org/10.1055/s-2004-815996

    Article  CAS  Google Scholar 

  22. Ge, H.M., Zhang, L.-D., Tan, R.X., and Yao, Z.-J., J. Am. Chem. Soc., 2012, vol. 134, p. 12323. https://doi.org/10.1021/ja305261h

    Article  PubMed  CAS  Google Scholar 

  23. Li, H., Wang, Y., Tang, L., Wu, F., Liu, X., Guo, C., Foxman, B.M., and Deng, L., Angew. Chem., Int. Ed., 2005, vol. 44, p. 105. https://doi.org/10.1002/anie.200461923

    Article  CAS  Google Scholar 

  24. Bartoli, G., Bosco, M., Carlone, A., Cavalli, A., Locatelli, M., Mazzanti, A., Ricci, P., Sambri, L., and Melchiorre, P., Angew. Chem., Int. Ed., 2006, vol. 45, p. 4966. https://doi.org/10.1002/anie.200600370

    Article  CAS  Google Scholar 

  25. Yamaoka, Y., Miyabe, H., Yasui, Y., and Takemoto, Y., Synthesis, 2007, vol. 2007, p. 2571. https://doi.org/10.1055/s-2007-983795

    Article  CAS  Google Scholar 

  26. Horino, Y., Angew. Chem., Int. Ed., 2007, vol. 46, p. 2144. https://doi.org/10.1002/anie.200605228

    Article  CAS  Google Scholar 

  27. Xi, Y., Wang, D., Ye, X., Akhmedov, N.G., Petersen, J.L., and Shi, X., Org. Lett., 2014, vol. 16, p. 306. https://doi.org/10.1021/ol403337u

    Article  PubMed  CAS  Google Scholar 

  28. Marigo, M., Kumaragurubaran, N., and Jørgensen, K.A., Synthesis, 2005, vol. 2005, p. 957. https://doi.org/10.1055/s-2005-861796

    Article  CAS  Google Scholar 

  29. Rajveer, Ch., Stephenrathinaraj, B., Sudharshini, S., Kumaraswamy, D., Shreshta, B., and Choudhury, P.K., Res. J. Pharm., Biol. Chem. Sci., 2010, vol. 1, p. 99.

    CAS  Google Scholar 

  30. Hagiwara, H., Sato, K., Nishino, D., Hoshi, T., Suzuki, T., and Ando, M., J. Chem. Soc., Perkin Trans. 1, 2001, p. 2946. https://doi.org/10.1039/B107180G

  31. Mekonnen, A. and Carlson, R., Synthesis, 2006, vol. 2006, no. 10, p. 1657. https://doi.org/10.1055/s-2006-926459

    Article  CAS  Google Scholar 

  32. Duan, Y.-A., Cui, L.-Q., Zuo, L.-H., and Zhang, C., Chem. Eur. J., 2015, vol. 21, p. 13052. https://doi.org/10.1002/chem.201502450

    Article  PubMed  CAS  Google Scholar 

  33. He, S., Yang, W., Zhu, L., Du, G., and Lee, C.-S., Org. Lett., 2014, vol. 16, p. 496. https://doi.org/10.1021/ol403374h

    Article  PubMed  CAS  Google Scholar 

  34. Yang, W., Cao, J., Zhang, M., Lan, R., Zhu, L., Du, G., He, S., and Lee, C.-S., J. Org. Chem., 2015, vol. 80, p. 836. https://doi.org/10.1021/jo502267g

    Article  PubMed  CAS  Google Scholar 

  35. Anxionnat, B., Robert, B., George, P., Ricci, G., Perrin, M.-A., Gomez Pardo, D., and Cossy, J., J. Org. Chem., 2012, vol. 77, p. 6087. https://doi.org/10.1021/jo300887u

    Article  PubMed  CAS  Google Scholar 

  36. Casey, M., Donnelly, J.A., Ryan, J.C., and Ushioda, S., Arkivoc, 2003, vol. 2003, no. 7, p. 310. https://doi.org/10.3998/ark.5550190.0004.726

    Article  Google Scholar 

  37. Schmidt, V.A. and Alexanian, E.J., J. Am. Chem. Soc., 2011, vol. 133, p. 11402. https://doi.org/10.1021/ja204255e

    Article  PubMed  CAS  Google Scholar 

  38. Fraga, C.A.M., Teixeira, L.H.P., Menezes, C.M.S., Sant’Anna, C.M.R., Ramos, M.C.K.V., Neto, F.R.A., and Barreiro, E.J., Tetrahedron, 2004, vol. 60, p. 2745. https://doi.org/10.1016/j.tet.2004.01.079

    Article  CAS  Google Scholar 

  39. Ivkovic, A., Matovic, R., and Saicic, R.N., Org. Lett., 2004, vol. 6, p. 1221. https://doi.org/10.1021/ol049875z

    Article  PubMed  CAS  Google Scholar 

  40. Punirun, T., Peewasan, K., Kuhakarn, C., Soorukram, D., Tuchinda, P., Reutrakul, V., Kongsaeree, P., Prabpai, S., and Pohmakotr, M., Org. Lett., 2012, vol. 14, p. 1820. https://doi.org/10.1021/ol3004194

    Article  PubMed  CAS  Google Scholar 

  41. Taber, D.F. and Guo, P., J. Org. Chem., 2008, vol. 73, p. 9479. https://doi.org/10.1021/jo8017704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ito, H., Ohmiya, H., and Sawamura, M., Org. Lett., 2010, vol. 12, p. 4380. https://doi.org/10.1021/ol101860j

    Article  PubMed  CAS  Google Scholar 

  43. Lamarque, S., Beaufils, F., Dénès, F., Schenk, K., and Renaud, P.,Adv. Synth. Catal., 2011, vol. 353, p. 1353. https://doi.org/10.1002/adsc.201000852

    Article  CAS  Google Scholar 

  44. Miura, T., Shimada, M., and Murakami, M., Angew. Chem., Int. Ed., 2005, vol. 44, p. 7598. https://doi.org/10.1002/anie.200502650

  45. Kusama, H., Watanabe, E., Ishida, K., and Iwasawa, N., Chem. Asian J., 2011, vol. 6, p. 2273. https://doi.org/10.1002/asia.201100460

    Article  PubMed  CAS  Google Scholar 

  46. Iwai, T., Okochi, H., Ito, H., and Sawamura, M., Angew. Chem., Int. Ed., 2013, vol. 52, 4239. https://doi.org/10.1002/anie.201300265

  47. Hierold, J. and Lupton, D.W., Org. Lett., 2012, vol. 14, p. 3412. https://doi.org/10.1021/ol301386k

    Article  PubMed  CAS  Google Scholar 

  48. Reddy, C., Babu, S.A., Aslam, N.A., and Rajkumar, V., Eur. J. Org. Chem., 2013, vol. 2013, p. 2362. https://doi.org/10.1002/ejoc.201201382

    Article  CAS  Google Scholar 

  49. Hierold, J., Hsia, T., and Lupton, D.W., Org. Biomol. Chem., 2011, vol. 9, p. 783. https://doi.org/10.1039/C0OB00632G

    Article  PubMed  CAS  Google Scholar 

  50. Chung, S.H., Cho, M.S., Choi, J.Y., Kwon, D.W., and Kim, Y.H.,Synlett, 2001, vol. 2001, p. 1266. https://doi.org/10.1055/s-2001-16064

    Article  Google Scholar 

  51. Nishikawa, K., Ando, T., Maeda, K., Morita, T., and Yoshimi, Y.,Org. Lett., 2013, vol. 15, p. 636. https://doi.org/10.1021/ol303460u

    Article  PubMed  CAS  Google Scholar 

  52. Penning, M. and Christoffers, J., Eur. J. Org. Chem., 2013, vol. 2013, no. 2, p. 389. https://doi.org/10.1002/ejoc.201201158

    Article  CAS  Google Scholar 

  53. Bhar, S., Chaudhuri, S.K., Sahu, S.G., and Panja, C., Tetrahedron, 2001, vol. 57, p. 9011. https://doi.org/10.1016/S0040-4020(01)00896-1

    Article  CAS  Google Scholar 

  54. Kraus, G.A., Nguyen, T.H., and Jeon, I., Tetrahedron Lett., 2003, vol. 44, p. 659. https://doi.org/10.1016/S0040-4039(02)02693-X

    Article  CAS  Google Scholar 

  55. Trost, B.M. and Fandrick, D.R., Aldrichimica Acta, 2007, vol. 40, p. 59.

    CAS  Google Scholar 

  56. Ooi, T. and Maruoka, K., Aldrichimica Acta, 2007, vol. 40, p. 77.

    CAS  Google Scholar 

  57. Ooi, T. and Maruoka, K., Angew. Chem., Int. Ed., 2007, vol. 46, p. 4222. https://doi.org/10.1002/anie.200601737

    Article  CAS  Google Scholar 

  58. Pravst, I., Zupan, M., and Stavber, S., Tetrahedron, 2008, vol. 64, p. 5191. https://doi.org/10.1016/j.tet.2008.03.048

    Article  CAS  Google Scholar 

  59. Mellegaard-Waetzig, S.R., Wang, C., and Tunge, J.A., Tetrahedron, 2006, vol. 62, p. 7191. https://doi.org/10.1016/j.tet.2005.12.072

    Article  CAS  Google Scholar 

  60. Sreedhar, B., Reddy, P.S., and Madhavi, M., Synth. Commun., 2007, vol. 37, p. 4149. https://doi.org/10.1080/00397910701574908

    Article  CAS  Google Scholar 

  61. Meshram, H.M., Reddy, P.N., Vishnu, P., Sadashiv, K., and Yadav, J.S., Tetrahedron Lett., 2006, vol. 47, p. 991. https://doi.org/10.1016/j.tetlet.2005.11.141

    Article  CAS  Google Scholar 

  62. Mei, Y., Bentley, P.A., and Du, J., Tetrahedron Lett., 2008, vol. 49, p. 3802. https://doi.org/10.1016/j.tetlet.2008.03.154

    Article  CAS  Google Scholar 

  63. Etayo, P., Badorrey, R., Díaz-de-Villegas, M.D., and Gálvez, J.A.,Adv. Synth. Catal., 2010, vol. 352, p. 3329. https://doi.org/10.1002/adsc.201000594

    Article  CAS  Google Scholar 

  64. Fang, L.-Z., Shen, J.-M., Li, Q.-H., and Yan, F.-L., Asian J. Chem., 2011, vol. 23, p. 3425.

    CAS  Google Scholar 

  65. Fang, L.-Z., Li, Q.-H., Liu, J.-P., and Yan, F.-L., Asian J. Chem., 2011, vol. 23, p. 2919.

    CAS  Google Scholar 

  66. Bartoli, G., Bosco, M., Carlone, A., Locatelli, M., Melchiorre, P., and Sambri, L., Angew. Chem., Int. Ed., 2005, vol. 44, p. 6219. https://doi.org/10.1002/anie.200502134

    Article  Google Scholar 

  67. Stavber, G., Zupana, M., and Stavber, S., Tetrahedron Lett., 2007, vol. 48, p. 2671. https://doi.org/10.1016/j.tetlet.2007.02.077

    Article  CAS  Google Scholar 

  68. Burger, C.C., Barron, B.R., and Tunge, J.A., Synlett, 2006, vol. 2006, p. 2824. https://doi.org/10.1055/s-2006-950265

    Article  CAS  Google Scholar 

  69. Parnes, R., Kshirsagar, U.A., and Werbeloff, A., Org. Lett., 2012, vol. 14, p. 3324. https://doi.org/10.1021/ol301297k

    Article  PubMed  CAS  Google Scholar 

  70. Petersen, M.D., Boye, S.V., Nielsen, E.H., Willumsen, J., Sinning, S., Wiborg, O., and Bols, M., Bioorg. Med. Chem., 2007, vol. 15, p. 4159. https://doi.org/10.1016/j.bmc.2007.03.069

    Article  PubMed  CAS  Google Scholar 

  71. Christensen, H.S., Boye, S.V., Thinggaard, J., Sinning, S., Wiborg, O., Schiøtt, B., and Bols, M., Bioorg. Med. Chem., 2007, vol. 15, p. 5262. https://doi.org/10.1016/j.bmc.2007.05.015

    Article  PubMed  CAS  Google Scholar 

  72. Langer, P. and Schneider, T., Synlett, 2000, vol. 2000, p. 497. https://doi.org/10.1055/s-2000-6570

    Article  Google Scholar 

  73. Popov, S.A. and Tkachev, A.V., Synth. Commun., 2001, vol. 31, p. 233. https://doi.org/10.1081/SCC-100000204

    Article  CAS  Google Scholar 

  74. Cotman, A.E., Cahard, D., and Mohar, B., Angew. Chem., Int. Ed., 2016, vol. 55, p. 5294. https://doi.org/10.1002/anie.201600812

    Article  CAS  Google Scholar 

  75. Novikov, V.L. and Shestak, O.P., Russ. Chem. Bull., Int. Ed., 2013, vol. 62, p. 2171. https://doi.org/10.1007/s11172-013-0316-6

    Article  CAS  Google Scholar 

  76. Ukrainets, I.V., Kolesnik, E.V., Sidorenko, L.V., Gorokhova, O.V., and Turov, A.V., Chem. Heterocycl. Compd., 2006, vol. 42, p. 765. https://doi.org/10.1007/s10593-006-0159-2

    Article  CAS  Google Scholar 

  77. Ohashi, T., Oguro, Y., Tanaka, T., Shiokawa, Z., Tanaka, Y.,Shibata, S., Sato, Y., Yamakawa, H., Hattori, H., Yamamoto, Y., Kondo, S., Miyamoto, M., Nishihara, M., Ishimura, Y., Tojo, H., Bara, A., and Sasaki, S.,Bioorg. Med. Chem., 2012, vol. 20, p. 5507. https://doi.org/10.1016/j.bmc.2012.07.034

    Article  PubMed  CAS  Google Scholar 

  78. Ukrainets, I.V., Bereznyakova, N.L., Gorokhova, O.V., Turov, A.V., and Shishkina, S.V., Chem. Heterocycl. Compd., 2007, vol. 43, p. 1001. https://doi.org/10.1007/s10593-007-0156-0

    Article  CAS  Google Scholar 

  79. Dahmen, S. and Bräse, S., Synthesis, 2001, vol. 2001, p. 1431. https://doi.org/10.1055/s-2001-16080

    Article  Google Scholar 

  80. Schinnerl, M., Murray, J.K., Langenhan, J.M., and Gellman, S.H.,Eur. J. Org. Chem., 2003, vol. 2003, p. 721. https://doi.org/10.1002/ejoc.200390112

    Article  Google Scholar 

  81. Ramazanov, A.K., Sorokin, V.V., and Kriven’ko, A.P., Butlerov. Soobshch., 2002, vol. 2, no. 10, p. 79–82.

    Google Scholar 

  82. Gein, V.L., Gein, N.V., Voronina, E.V., and Kriven’ko, A.P.,Pharm. Chem. J., 2002, vol. 36, p. 131. https://doi.org/10.1023/A:1019678210738

    Article  CAS  Google Scholar 

  83. Poplevina, N.V., Kriven’ko, A.P., Shchelochkova, O.A., Golikov, A.G., and Solodovnikov, S.F., Russ. J. Org. Chem., 2009, vol. 45, p. 1790. https://doi.org/10.1134/S1070428009120070

    Article  CAS  Google Scholar 

  84. Shchelochkova, O.A., Sorokin, V.V., and Kriven’ko, A.P., Butlerov. Soobshch., 2003, vol. 4, no. 1, p. 20.

    Google Scholar 

  85. Sorokin, V.V., Kriven’ko, A.P., Vinogradova, N.A., and Plotnikov, O.P., Pharm. Chem. J., 2001, vol. 35, p. 488. https://doi.org/10.1023/A:1014090608261

    Article  CAS  Google Scholar 

  86. Gein, V.L., Prusakova, A.S., Nosova, N.V., Vakhrin, M.I., Voronina, E.V., and Kriven’ko, A.P., Pharm. Chem. J., 2010, vol. 44, p. 427. https://doi.org/10.1007/s11094-010-0483-9

    Article  CAS  Google Scholar 

  87. Yoo, K.H., Choi, E.B., Lee, H.K., Yeon, G.H., Yang, H.C., and Pac, C.S., Synthesis, 2006, vol. 2006, p. 1599. https://doi.org/10.1055/s-2006-926463

    Article  CAS  Google Scholar 

  88. Becker, W.A., Eller, G.A., and Holzer, W., Synthesis, 2005, vol. 2005, p. 2583. https://doi.org/10.1055/s-2005-872078

    Article  CAS  Google Scholar 

  89. Tapia, R.A., López, C., and Morello, A., Synthesis, 2005, vol. 2005, p. 903. https://doi.org/10.1055/s-2005-861802

    Article  CAS  Google Scholar 

  90. Kotljarov, A., Iaroshenko, V.O., and Volochnyuk, D.M., Synthesis, 2009, vol. 2009, p. 3869. https://doi.org/10.1055/s-0029-1216995

    Article  CAS  Google Scholar 

  91. Tonkikh, N., Strakov, A., Petrova, M., Chernyshev, V.V., and Schenk, H., Chem. Heterocycl. Compd., 2002, vol. 38, p. 724. https://doi.org/10.1023/A:1019929622048

    Article  CAS  Google Scholar 

  92. Cui, J., Chai, D.I., Miller, C., Hao, J., Thomas, C., Wang, J., Scheidt, K.A., and Kozmin, S.A., J. Org. Chem., 2012, vol. 77, p. 7435. https://doi.org/10.1021/jo301061r

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Liu, X-Y. and Che, C-M., Angew. Chem., Int. Ed., 2009, vol. 48, p. 2367. https://doi.org/10.1002/anie.200805383

    Article  CAS  Google Scholar 

  94. Ng, E.P.J., Wang, Y.-F., and Chiba, S., Synlett, 2011, vol. 2011, p. 783. https://doi.org/10.1055/s-0030-1259920

    Article  CAS  Google Scholar 

  95. DeAngelis, A., Wang, D-H., and Buchwald, S.L., Angew. Chem., Int. Ed., 2013, vol. 52, p. 3434. https://doi.org/10.1002/anie.201208544

    Article  CAS  Google Scholar 

  96. Hang, C., Li, Q., Zhu, Y., and Katayama, H., Synth. Commun., 2011, vol. 41, p. 3318. https://doi.org/10.1080/00397911.2010.517892

    Article  CAS  Google Scholar 

  97. Zhu, Y.-M., Qin, L.-N., Liu, R., Ji, S-J., and Katayama, H.,Tetrahedron Lett., 2007, vol. 48, p. 6262. https://doi.org/10.1016/j.tetlet.2007.07.033

    Article  CAS  Google Scholar 

  98. Ermolenko, M.S., Guillou, S., and Janin, Y.L., Tetrahedron, 2013, vol. 69, p. 257. https://doi.org/10.1016/j.tet.2012.10.034

    Article  CAS  Google Scholar 

  99. Kashima, C., Heterocycles, 2003, vol. 60, p. 959. https://doi.org/10.3987/REV-02-560

    Article  CAS  Google Scholar 

  100. Kashima, C., Miwa, Y., Shibata, S., and Nakazono, H., J. Heterocycl. Chem., 2002, vol. 39, p. 1235. https://doi.org/10.1002/jhet.5570390618

    Article  CAS  Google Scholar 

  101. Kashima, C., Shibata, S., Yokoyama, H., and Nishio, T., J. Heterocycl. Chem., 2003, vol. 40, p. 773. https://doi.org/10.1002/jhet.5570400505

    Article  CAS  Google Scholar 

  102. Wu, D., Jin, F., Lu, W., Zhu, J., Li, C., Wang, W., Tang, Y., Jiang, H., Huang, J., Liu, G., and Li, J., Chem. Biol. Drug Des., 2012, vol. 79, p. 897. https://doi.org/10.1111/j.1747-0285.2012.01365.x

    Article  PubMed  CAS  Google Scholar 

  103. Van Herk, T., Brussee, J., van den Nieuwendijk, A.M.C.H., van der Klein, P.A.M., Izerman, A.P., Stannek, C., Burmeister, A., and Lorenzen, A.,J. Med. Chem., 2003, vol. 46, p. 3945. https://doi.org/10.1021/jm030888c

    Article  PubMed  CAS  Google Scholar 

  104. Wei, G., Wu, Y., He, X.-L., Liu, T., Luo, J., and Qiu, W.-W.,Eur. J. Med. Chem., 2017, vol. 131, p. 48. https://doi.org/10.1016/j.ejmech.2017.03.008

    Article  PubMed  CAS  Google Scholar 

  105. Li, H., Zou, H., Gao, L., Liu, T., Yang, F., Li, J-Ya., Li, J., Qiu, W.-W., and Tang, J., Heterocycles, 2012, vol. 85, p. 1117. https://doi.org/10.3987/COM-12-12445

    Article  CAS  Google Scholar 

  106. Sun, L., Li, B., Su, X., Chen, G., Li, Y., Yu, L., Li, L., and Wei, W., J. Med. Chem., 2017, vol. 60, p. 6638. https://doi.org/10.1021/acs.jmedchem.7b00592

    Article  PubMed  CAS  Google Scholar 

  107. Gao, C., Dai, F-J., Cui, H-W., Peng, S.-H., He, Y., Wang, X., Yi, Z.-F., and Qiu, W.-W., Chem. Biol. Drug Des., 2014, vol. 84, p. 223. https://doi.org/10.1111/cbdd.12308

    Article  PubMed  CAS  Google Scholar 

  108. Vafina, G.F., Galin, F.Z., Khakimova, T.V., and Yunusov, M.S.,Russ. J. Org. Chem., 2000, vol. 36, p. 1709.

    CAS  Google Scholar 

  109. Sorokin, V.V., Grigor’ev, A.V., Ramazanov, A.K., and Kriven’ko, A.P., Chem. Heterocycl. Compd., 1999, vol. 35, p. 671. https://doi.org/10.1007/BF02251624

    Article  CAS  Google Scholar 

  110. Potekhin, K.A., Askerov, R.K., Hajiyeva, K.E., Gadirova, N.A., and Nazarov, S.I., Acta Crystallogr., Sect. E, 2013, vol. 69, p. o243–o243. https://doi.org/10.1107/S1600536813000937

  111. Maharramov, A.M., Ismiev, A.I., Rashidov, B.A, and Aliyev, I.V.,Acta Crystallogr., Sect. E, 2011, vol. 67, p. o1127. https://doi.org/10.1107/S1600536811013195

  112. Amirthaganesan, S., Aridoss, G., Park, Y.H., Kim, J.S., Son, S.M., and Jeong, Y.T., Heterocycles, 2008, vol. 75, p. 537. https://doi.org/10.3987/COM-07-11231

    Article  CAS  Google Scholar 

  113. Levandovskaya, E.B., Cand. Sci. (Pharm.) Dissertation, Perm, 2008.

  114. Gein, V.L., Gein, N.V., Potemkin, K.D., and Kriven’ko, A.P.,Russ. J. Gen. Chem., 2004, vol. 74, p. 1564. https://doi.org/10.1007/s11176-005-0056-x

    Article  CAS  Google Scholar 

  115. Rajanarendar, E., Rao, E.K., and Karunakar, D., Indian J. Chem., Sect. B, 2006, vol. 45, p. 805.

    Google Scholar 

  116. Grigor’eva, E.A., Sorokin, V.V., and Kriven’ko, A.P., Butlerov. Soobshch., 2002, vol. 3, no. 11, p. 26.

    Google Scholar 

  117. Gein, V.L., Nosova, N.V., Potemkin, K.D., Aliev, Z.G., and Kriven’ko, A.P., Russ. J. Org. Chem., 2005, vol. 41, p. 1016. https://doi.org/10.1007/s11178-005-0287-7

    Article  CAS  Google Scholar 

  118. Ramazanov, A.K., Sorokin, V.V., and Kriven’ko, A.P., Butlerov. Soobshch., 2002, vol. 2, no. 6, p. 81.

    Google Scholar 

  119. Amirthaganesan, S., Mohan, R.T.S., Murugavel, K., Muthukumaran, G., and Pandiarajan, K., Indian J. Chem., Sect. B, 2007, vol. 46, p. 1004.

    Google Scholar 

  120. Smirnova, N.O., Plotnikov, O.P., Vinogradova, N.A., Sorokin, V.V., and Kriven’ko, A.P., Pharm. Chem. J., 1995, vol. 29, p. 49. https://doi.org/10.1007/BF02219464

    Article  Google Scholar 

  121. Maharramov, A.M., Ismiyev, A.I., and Rashidov, B.A., Acta Crystallogr., Sect. E, 2010, vol. 66, p. o3030. https://doi.org/10.1107/S1600536810043667

  122. Subbotin, V.E., Subbotin, V.V., and Kriven’ko, A.P., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2008, vol. 51, p. 112.

    CAS  Google Scholar 

  123. Hote, B.S. and Lokhande, P.D., Synth. Commun., 2014, vol. 44, p. 1492. https://doi.org/10.1080/00397911.2013.862724

    Article  CAS  Google Scholar 

  124. Abele, E., Abele, R., and Lukevics, E., Chem. Heterocycl. Compd., 2007, vol. 43, p. 387. https://doi.org/10.1007/s10593-007-0057-2

    Article  CAS  Google Scholar 

  125. Sevenard, D.V., Khomutov, O.G., Pashkevich, K.I., Lork, E., and Röschenthaler, G.-V., Helv. Chim.Acta, 2002, vol. 85, p. 1960. https://doi.org/10.1002/1522-2675(200207)85:7<1960::AID-HLCA1960>3.0.CO;2-6

    Article  CAS  Google Scholar 

  126. Hwang, B.H., Choi, E.B., Lee, H.K., Yang, H.C., Chung, B.Y., and Pak, C.S., Synthesis, 2008, vol. 2008, no. 22, p. 3569. https://doi.org/10.1055/s-0028-1083197

    Article  CAS  Google Scholar 

  127. Flores, A.F.C., Martins, M.A.P., Rosa, A., Flores, D.C., Zanatta, N., and Bonacorsso, H.G., Synth. Commun., 2002, vol. 32, p. 1585. https://doi.org/10.1081/SCC-120004150

    Article  CAS  Google Scholar 

  128. Kashima, C., Tsykamoto, Y., Miva, Y., and Higashide, K., J. Heterocycl. Chem., 2001, vol. 38, p. 601. https://doi.org/10.1002/jhet.5570380308

    Article  CAS  Google Scholar 

  129. Osborne, R., Clarke, N., Glossop, P., Kenyon, A., Liu, H., Patel, S., Summerhill, S., and Jones, L.H., J. Med. Chem., 2011, vol. 54, p. 6998. https://doi.org/10.1021/jm2007535

    Article  PubMed  CAS  Google Scholar 

  130. Strakova, I., Strakovs, A., and Petrova, M., Chem. Heterocycl. Compd., 2002, vol. 38, p. 429. https://doi.org/10.1023/A:1016079221645

    Article  CAS  Google Scholar 

  131. Gopalakrishnan, M., Thanusu, J., and Kanagarajan, V., Chem. Heterocycl. Compd., 2008, vol. 44, p. 950. https://doi.org/10.1007/s10593-008-0137-y

    Article  CAS  Google Scholar 

  132. Sevenard, D.V., Khomutov, O.G., Kodess, M.I., Pashkevich, K.I., Loop, I., Lork, E., and Röschenthaler, G.-V., Can. J. Chem., 2001, vol. 79, p. 183. https://doi.org/10.1139/v01-003

    Article  CAS  Google Scholar 

  133. Ilaldinov, I.Z., Fatkulina, D.A., and Kadyrov, R., Russ. J. Org. Chem., 2011, vol. 47, p. 952. https://doi.org/10.1134/S1070428011060224

    Article  CAS  Google Scholar 

  134. Vaickelioniene, R., Mickevicius, V., and Mikulskiene, G., Chem. Heterocycl. Compd., 2004, vol. 40, p. 767. https://doi.org/10.1023/B:COHC.0000040773.29086.36

    Article  CAS  Google Scholar 

  135. Khlebnicova, T.S., Isakova, V.G., Lakhvich, F.A., and Kurman, P.V.,Chem. Heterocycl. Compd., 2008, vol. 44, p. 301. https://doi.org/10.1007/s10593-008-0044-2

    Article  CAS  Google Scholar 

  136. Gemma, S., Butini, S., Campiani, G., Brindisi, M., Zanoli, S., Romano, M.P., Tripaldi, P., Savini, L., Fiorini, I., Borrelli, G., Novellino, E., and Maga, G., Bioorg. Med. Chem. Lett., 2011, vol. 21, p. 2776. https://doi.org/10.1016/j.bmcl.2010.09.002

    Article  PubMed  CAS  Google Scholar 

  137. Spilovska, K., Korabecny, J., Kral, J., Horova, A., Musilek, K., Soukup, O., Drtinova, L., Gazova, Z., Siposova, K., and Kuca, K., Molecules, 2013, vol. 18, p. 2397. https://doi.org/10.3390/molecules18022397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Cross, R.M., Maignan, J.R., Mutka, T.S., Luong, L., Sargent, J., Kyle, D.E., and Manetsch, R., J. Med. Chem., 2011, vol. 54, p. 4399. https://doi.org/10.1021/jm200015a

    Article  PubMed  CAS  Google Scholar 

  139. Patil, S.R., Shelar, D.P., Rote, R.V., and Jachak, M.N., J. Fluoresc., 2011, vol. 21, p. 2037. https://doi.org/10.1007/s10895-011-0915-2

    Article  PubMed  CAS  Google Scholar 

  140. Shelar, D.P., Rote, R.V., Patil, S.R., and Jachak, M.N., Luminescence, 2012, vol. 27, p. 398. https://doi.org/10.1002/bio.1364

    Article  PubMed  CAS  Google Scholar 

  141. Faňanás, F.J., Arto, T., Mendoza, A., and Rodríguez, F., Org. Lett., 2011, vol. 13, p. 4184. https://doi.org/10.1021/ol201655u

    Article  PubMed  CAS  Google Scholar 

  142. Gulyakevich, O.V., Zaitsev, V.G., and Mikhal’chuk, A.L. Chem. Heterocycl. Compd., 2000, vol. 36, p. 956. https://doi.org/10.1007/BF02256981

    Article  CAS  Google Scholar 

  143. Kaiho, T., Sannohe, K., Kajiya, S., Suzuki, T., Otsuka, K., Ita, T., Kamiya, J., and Maruyama, M., J. Med. Chem., 1989, vol. 32, p. 351. https://doi.org/10.1021/jm00122a012

    Article  PubMed  CAS  Google Scholar 

  144. Lozinskii, M.O., Chernega, A.N., and Shelyakin, V.V., Russ. J. Org. Chem., 2002, vol. 38, p. 1661. https://doi.org/10.1023/A:1022522420258

    Article  CAS  Google Scholar 

  145. Van Linden, O.P.J., Farenc, C., Zoutman, W.H., Hameetmann, L., Wijtmans, M., Leurs, R., Tensen, C.P., Siegal, G., and de Esch, I.J.P.,Eur. J. Med. Chem., 2012, vol. 47, p. 493. https://doi.org/10.1016/j.ejmech.2011.11.020

    Article  PubMed  CAS  Google Scholar 

  146. Van Linden, O.P.J., Wijtmans, M., Roumen, L., Rotteveel, L., Leurs, R., and de Esch, I.J.P., J. Org. Chem., 2012, vol. 77, p. 7355. https://doi.org/10.1021/jo301138w

    Article  PubMed  CAS  Google Scholar 

  147. Shestopalov, A.M., Shestopalov, A.A., and Rodinovskaya, L.A.,Synthesis, 2008, vol. 1, p. 1. https://doi.org/10.1055/s-2007-990942

    Article  CAS  Google Scholar 

  148. Kuznetsov, A.Yu. and Chapyshev, S.V., Chem. Heterocycl. Compd., 2007, vol. 43, p. 1320. https://doi.org/10.1007/s10593-007-0200-0

    Article  CAS  Google Scholar 

  149. Kuznetsov, A.Yu., Nam, N.L., and Chapyshev, S.V., Chem. Heterocycl. Compd., 2007, vol. 43, p. 640. https://doi.org/10.1007/s10593-007-0100-3

    Article  CAS  Google Scholar 

  150. Kuznetsov, A.Yu. and Chapyshev, S.V., Chem. Heterocycl. Compd., 2007, vol. 43, p. 1167. https://doi.org/10.1007/s10593-007-0179-6

    Article  CAS  Google Scholar 

  151. Tonkikh, N.N., Strakov, A.Ya., and Petrova, M.V., Chem. Heterocycl. Compd., 2000, vol. 36, p. 174. https://doi.org/10.1007/BF02283547

    Article  CAS  Google Scholar 

  152. Voskressensky, L.G., Borisova, T.N., Ovcharov, M.V., Kulilova, L.N., Sorokina, E.A., Borisov, R.S., and Varlamov, A.V., Chem. Heterocycl. Compd., 2008, vol. 44, p. 1510. https://doi.org/10.1007/s10593-009-0217-7

    Article  CAS  Google Scholar 

  153. Hwang, J.Y., Windisch, M.P., Jo, S., Kim, K., Kong, S., Kim, H.C., Kim, S., Kim, H., Lee, M.E., Kim, Y., Choi, J., Park, D.-S., Park, E., Kwon, J., Nam, J., Ahn, S., Cechetto, J., Kim, J., Liuzzi, M., No, Z., and Lee, J.,Bioorg. Med. Chem. Lett., 2012, vol. 22, p. 7297. https://doi.org/10.1016/j.bmcl.2012.10.123

    Article  PubMed  CAS  Google Scholar 

  154. Poplevina, N.V., Kuznetsova, A.A., and Kriven’ko, A.P., Chem. Heterocycl. Compd., 2010, vol. 46, p. 1148. https://doi.org/10.1007/s10593-010-0644-5

    Article  CAS  Google Scholar 

  155. Cai, L., Ji, X., Yao, Z., Xu, F., and Shen, Q., Chin. J. Chem., 2011, vol. 29, p. 1880. https://doi.org/10.1002/cjoc.201180328

    Article  CAS  Google Scholar 

  156. Mamedov, V.A., Kalinin, A.A., Gubaidullin, A.T., Litvinov, I.A., and Levin, Ya.A., Chem. Heterocycl. Compd., 2003, vol. 39, p. 96. https://doi.org/10.1023/A:1023028927007

    Article  CAS  Google Scholar 

  157. Nazeruddin, G.M., Pandharpatte, M.S., and Mulani, K.B., C. R. Chim., 2012, vol. 15, p. 91. https://doi.org/10.1016/j.crci.2011.10.005

    Article  CAS  Google Scholar 

  158. Kumar, B.S., Reddy, Y.T., Reddy, P.N., Kumar, P.S., and Rajitha, B., J. Heterocycl. Chem., 2006, vol. 43, p. 477. https://doi.org/10.1002/jhet.5570430233

    Article  CAS  Google Scholar 

  159. Smitha, G. and Reddy, C.S., Synth. Commun., 2004, vol. 34, p. 3997. https://doi.org/10.1081/SCC-200034821

    Article  CAS  Google Scholar 

  160. Singh, P.R., Singh, D.U., and Samant, S.D., Synlett, 2004, vol. 2004, p. 1909. https://doi.org/10.1055/s-2004-830858

    Article  CAS  Google Scholar 

  161. Rahmatpour, A. and Mohammadian, S., C. R. Chim., 2013, vol. 16, p. 271. https://doi.org/10.1016/j.crci.2013.01.006

    Article  CAS  Google Scholar 

  162. Kumar, B.S., Kumar, P.S., Srinivasulu, N., Rajitha, B., Reddy, Y.T., Reddy, P.N., and Udupi, R.H., Chem. Heterocycl. Compd., 2006, vol. 42, p. 172. https://doi.org/10.1007/s10593-006-0066-6

    Article  CAS  Google Scholar 

  163. Katkevičs, M., Kontijevskis, A., Mutule, I., and Sūna, E.,Chem. Heterocycl. Compd., 2007, vol. 43, p. 151. https://doi.org/10.1007/s10593-007-0025-x

    Article  Google Scholar 

  164. Turner, P.A., Griffin, E.M., Whatmore, J.L., and Shipman, M.,Org. Lett., 2011, vol. 13, p. 1056. https://doi.org/10.1021/ol103103n

    Article  PubMed  CAS  Google Scholar 

  165. Yoshida, M., Ohno, S., and Shishido, K., Chem. Eur. J., 2012, vol. 18, p. 1604. https://doi.org/10.1002/chem.201103246

    Article  PubMed  CAS  Google Scholar 

  166. Kalinin, A.A., Isaikina, O.G., and Mamedov, V.A., Chem. Heterocycl. Compd., 2007, vol. 43, p. 1307. https://doi.org/10.1007/s10593-007-0198-3

    Article  CAS  Google Scholar 

  167. Nakatani, K., Izawa, T., and Isoe, S., J. Org. Chem., 1994, vol. 59, p. 5961. https://doi.org/10.1021/jo00099a027

    Article  CAS  Google Scholar 

  168. Basarab, G.S., Jordan, D.B., Gehret, T.C., and Schwartz, R.S.,Bioorg. Med. Chem., 2002, vol. 10, p. 4143. https://doi.org/10.1016/S0968-0896(02)00272-9

    Article  PubMed  CAS  Google Scholar 

  169. Hayashi, Y., Shoji, M., and Kishida, S., Tetrahedron Lett., 2005, vol. 46, p. 681. https://doi.org/10.1016/j.tetlet.2004.11.119

    Article  CAS  Google Scholar 

  170. Muthusamy, S., Krishnamurthi, J., and Suresh, E., Chem. Commun., 2007, p. 861–863. https://doi.org/10.1039/B613008A

  171. Shcherbakova, I., Huang, G., Geoffroy, O.J., Nair, S.K., Swierczek, K., Balandrin, M.F., Fox, J., Heaton, W.L., and Conklin, R.L., Bioorg. Med. Chem. Lett., 2005, vol. 15, p. 2537. https://doi.org/10.1016/j.bmcl.2005.03.054

    Article  PubMed  CAS  Google Scholar 

  172. Aburel, P.S., Romming, C., Ma, K., and Undheim, K., J. Chem. Soc., Perkin Trans. 1, 2001, p. 1458. https://doi.org/10.1039/B101462P

  173. Hassner, A., Bandi, C.R., and Panchgalle, S., Synlett, 2012, vol. 23, p. 2773. https://doi.org/10.1055/s-0032-1317529

    Article  CAS  Google Scholar 

  174. Watson, F.C. and Kilburn, J.D., Tetrahedron Lett., 2000, vol. 41, p. 10341. https://doi.org/10.1016/S0040-4039(00)01859-1

    Article  CAS  Google Scholar 

  175. Huang, F., Browne, C.E., Wu, W.-M., Juhász, A., Ji, F., and Bodor, N., Pharm. Res., 2003, vol. 20, p. 1681. https://doi.org/10.1023/a:1026160023030

    Article  PubMed  CAS  Google Scholar 

  176. Kriven’ko, A.P., Kozlova, E.A., Grigor’ev, A.V., and Sorokin, V.V.,Molecules, 2003, vol. 8, p. 251. https://doi.org/10.3390/80200251

    Article  PubMed Central  Google Scholar 

  177. Kier, M.J., Leon, R.M., O’Rourke, N.F., Rheingold, A.L., and Micalizio, G.C., J. Am. Chem. Soc., 2017, vol. 139, p. 12374. https://doi.org/10.1021/jacs.7b06286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Qin, X.-Y., Chen, B.-Y., Fu, J.-J., Shan, L., Lei, X.-G., and Zhang, W.-D., Eur. J. Med. Chem., 2015, vol. 102, p. 256. https://doi.org/10.1016/j.ejmech.2015.07.051

    Article  PubMed  CAS  Google Scholar 

  179. Park, C.-H., Chun, K., Choi, J.-H., Ji, W.-K., Kim, H.Y., Kim, S.H., Han, G., and Kim, M.-H., Bull. Korean Chem. Soc., 2011, vol. 32, p. 1650. https://doi.org/10.5012/bkcs.2011.32.5.1650

    Article  CAS  Google Scholar 

  180. Valès, M., Lokshin, V., Pèpe, G., Samat, A., and Guglielmetti, R.,Synthesis, 2001, vol. 2001, p. 2419. https://doi.org/10.1055/s-2001-18719

    Article  Google Scholar 

  181. Usova, E.B., Lysenko, L.I., Krapivin, G.D., and Kul’nevich, V.G.,Chem. Heterocycl. Compd., 1996, vol. 32, p. 548. https://doi.org/10.1007/BF01164783

    Article  Google Scholar 

  182. Sharma, A., Pandey, J., and Tripathi, R.P., Tetrahedron Lett., 2009, vol. 50, p. 1812. https://doi.org/10.1016/j.tetlet.2009.02.001

    Article  CAS  Google Scholar 

  183. Zhao, H., Dong, J., Lafleur, K., Nevado, C., and Caflisch, A.,ACS Med. Chem. Lett., 2012, vol. 3, p. 834. https://doi.org/10.1021/ml3001984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Rao, H.S.P. and Senthilkumar, S.P., J. Org. Chem., 2004, vol. 69, p. 2591. https://doi.org/10.1021/jo0353839

    Article  PubMed  CAS  Google Scholar 

  185. Kawata, A., Takata, K., Kuninobu, Y., and Takai, K., Angew. Chem., Int. Ed., 2007, vol. 46, p. 7793. https://doi.org/10.1002/anie.200702798

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Dyachenko.

Ethics declarations

The authors declare the absence of conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyachenko, V.D., Sukach, S.M. & Morkovnik, A.S. 2-Acylcycloalkanones in Organic Synthesis. Russ J Org Chem 56, 949–973 (2020). https://doi.org/10.1134/S1070428020060019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428020060019

Keywords:

Navigation