Skip to main content
Log in

High-Temperature Synthesis of Cobalt Nanoparticles in Hyperbranched Polyester Polyol Medium

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of CoNPs cobalt nanoparticles by the method of polyol- process was proposed, which consists in a high-temperature synthesis of polymer-stabilized metal nanoparticles in a matrix of a fourth-generation hyperbranched polyester polyol. Branched polyester polyol acts as both a reducing agent and a stabilizer at the same time. It has been found that the reduction of the precursor CoCl2 with a hyperbranched polyester polyol occurs at 210°C. The introduction of NaOH into the reaction mixture makes it possible to lower the synthesis temperature by 50°C and leads to a change in the mechanism of in situ ripening CoNPs from the digestive mechanism to direct Ostwald ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Fievet, F., Lagier, J., Blin, B., Beaudoin, B., and Figlarz, M., Solid State Ion., 1989, vols. 32‒33, p. 198. https://doi.org/10.1016/0167-2738(89)90222-1

    Article  Google Scholar 

  2. Mourdikoudis, S., Reducing Agents in Colloidal Nanoparticle Synthesis, Mourdikoudis, S., Ed., The Royal Society of Chemistry, 2021. https://doi.org/10.1039/9781839163623

  3. Liu, Q., Cao, X., Wang, T., Wang, C., Zhang, Q., and Ma, L., RSC Adv., 2015, vol. 5, no. 7, p. 4861. https://doi.org/10.1039/c4ra13395a

    Article  CAS  Google Scholar 

  4. Takahashi, K., Yokoyama, S., Matsumoto, T., Cuya Huaman, J.L., Kaneko, H., Piquemal, J.Y., Miyamura, H., and Balachandran, J., New J. Chem., 2016, vol. 40, no. 10, p. 8632. https://doi.org/10.1039/c6nj01738j

    Article  CAS  Google Scholar 

  5. Eluri, R. and Paul, B., Mater. Lett., 2012, vol. 76, p. 36. https://doi.org/10.1016/j.matlet.2012.02.049

    Article  CAS  Google Scholar 

  6. Silvert, P.Y., Herrera-Urbina, R., Duvauchelle, N., Vijayakrishnan, V., and Elhsissen, K.T., J. Mater. Chem., 1996, vol. 6, no. 4, p. 573. https://doi.org/10.1039/JM9960600573

    Article  CAS  Google Scholar 

  7. Soumare, Y., Garcia, C., Maurer, T., Chaboussant, G., Ott, F., Fiévet, F., Piquemal, J.Y., and Viau, G., Adv. Funct. Mater., 2009, vol. 19, no. 12, p. 1971. https://doi.org/10.1002/adfm.200800822

    Article  CAS  Google Scholar 

  8. Joseyphus, R.J., Shinoda, K., Kodama, D., and Jeyadevan, B., Mater. Chem. Phys., 2010, vol. 123, nos. 2‒3, p. 487. https://doi.org/10.1016/j.matchemphys.2010.05.001

    Article  CAS  Google Scholar 

  9. Couto, G.G., Klein, J.J., Schreiner, W.H., Mosca, D.H., and Zarbin, A.J.G., J. Colloid Interface Sci., 2007, vol. 311, no. 2, p. 461. https://doi.org/10.1016/j.jcis.2007.03.045

    Article  CAS  Google Scholar 

  10. Wu, S.H. and Chen, D.H., J. Colloid Interface Sci., 2003, vol. 259, no. 2, p. 282. https://doi.org/10.1016/S0021-9797(02)00135-2

    Article  CAS  Google Scholar 

  11. Yang, H., Shen, C., Song, N., Wang, Y., Yang, T., Gao, H., and Cheng, Z., Nanotechnol., 2010, vol. 21, no. 37. Reg. 375602. https://doi.org/10.1088/0957-4484/21/37/375602

  12. Izu, N., Matsubara, I., Uchida, T., Itoh, T., and Shin, W., J. Ceram. Soc. Jpn., 2017, vol. 125, no. 9, p. 701. https://doi.org/10.2109/jcersj2.17114

    Article  CAS  Google Scholar 

  13. Žagar, E. and Žigon, M., Prog. Polym. Sci., 2011, vol. 36, no. 1, p. 53. https://doi.org/10.1016/j.progpolymsci.2010.08.004

    Article  CAS  Google Scholar 

  14. Zheng, Y., Li, S., Wenig, Z., and Gao, C., Chem. Soc. Rev., 2015, vol. 44, no. 12, p. 4091. https://doi.org/10.1039/c4cs00528g

    Article  CAS  Google Scholar 

  15. Khannanov, A.A., Rossova, A.A., Ignatyeva, K.A., Ulakhovich, N.A., Gerasimov, A.V., Boldyrev, A.E., Evtugyn, V.G., Rogov, A.M., Cherosov, M.A., Gilmutdinov, I.F., and Kutyreva, M.P., J. Magn. Magn. Mater., 2021. ID 168808. https://doi.org/10.1016/j.jmmm.2021.168808

  16. Medvedeva, O.I., Kambulova, S.S., Bondar, O.V., Gataulina, A.R., Ulakhovich, N.A., Gerasimov, A.V., Evtugyn, V.G., Gilmutdinov, I.F., and Kutyreva, M.P., J. Nanotechnol., 2017, vol. 2017, p. 1. https://doi.org/10.1155/2017/7607658

    Article  CAS  Google Scholar 

  17. Joseyphus, R.J., Matsumoto, T., Takahashi, H., Kodama, D., Tohji, K., and Jeyadevan, B., J. Solid State Chem., 2007, vol. 180, no. 11, p. 3008. https://doi.org/10.1016/j.jssc.2007.07.024

    Article  CAS  Google Scholar 

  18. Aranishi, K., Zhu, Q-L., and Xu, Q., ChemCatChem., 2014, vol. 6, no. 5, p. 1375. https://doi.org/10.1002/cctc.201301006

    Article  CAS  Google Scholar 

  19. Alrehaily, L.M., Joseph, J.M., Biesinger, M.C., Guzonas, D.A., and Wren, J.C., Phys. Chem. Chem. Phys., 2013, vol. 15, no. 3, p. 1014. https://doi.org/10.1039/c2cp43094k

    Article  CAS  Google Scholar 

  20. Karahan, S. and Özkar, S., Int. J. Hydrog. Energy, 2015, vol. 40, no. 5, p. 2255. https://doi.org/10.1016/j.ijhydene.2014.12.028

    Article  CAS  Google Scholar 

  21. Pretsch, D.P., Bühlmann, P., and Affolter, C., Structure Determination of Organic Compounds, Berlin: Springer Verlag, 2000. https://doi.org/10.1007/978-3-662-04201-4

  22. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, 2008. https://doi.org/10.1002/9780470405840

  23. Organikum. Organisch-Chemisches Grundpraktikum, Becker, H.G.O., Heidelberg: Johann Ambrosius Barth Verlag, vol. 1, 1976.

Download references

Funding

The work was carried out at the expense of the Strategic Academic Leadership Program of the Kazan (Volga Region) Federal University (“Priority-2030”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Kutyreva.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutyreva, M.P., Burmatova, A.E., Khannanov, А.А. et al. High-Temperature Synthesis of Cobalt Nanoparticles in Hyperbranched Polyester Polyol Medium. Russ J Gen Chem 92, 2838–2844 (2022). https://doi.org/10.1134/S1070363222120350

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222120350

Keywords:

Navigation