Skip to main content
Log in

In Silico and In Vitro Analysis of Acetylcholinesteraseand Glutathione S-Transferase Enzymes of Substituted Pyrazoles

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A series of substitute pyrazole compounds including azide, acetyl, triazole, morpholine, piperidine, and pyrrolidine moieties were synthesized and their structures were elucidated by NMR, HPLC and mass spectroscopy. The inhibition efficiencies of all novel compounds against acetylcholinesterase (AChE) and glutathione S-transferase (GST) enzymes were investigated. In vitro studies revealed that the inhibitory activities of substitute pyrazole compounds were determined with Ki values in the range of 0.11–0.49 µM for AChE, and 0.12–0.91 µM for GST, respectively. Furthermore, the molecular docking studies of the detailed interactions between the pyrazole compounds and AChE-GST enzymes were identified with bonding type, distance, hydrophobic bonds and hydrogen bonds. The binding energies of the AChE-pyrazole analogs’ complexes were found between –5.5 and –9.3 kcal/mol, and the binding energies of the GST-pyrazole analogs’ complexes were found between –5.9 and –9.2 kcal/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Mathew, B., Parambi, D.G., Mathew, G.E., Uddin, M.S., Inasu, S.T., Kim, H., and Carradori, S., Arch. Pharm., 2019, vol. 352, no. 11, p. 1900177. https://doi.org/10.1002/ardp.201900177

    Article  CAS  Google Scholar 

  2. Li, H., Su, Y.S., He, W., Zhang, J.B., Zhang, Q., Jing, X.H., and Zhan, L.B., FASEB J., 2022, vol. 36, no. 3, p. e22165. https://doi.org/10.1096/fj.202101529R

  3. Danish, M., Jabeen, N., Raza, M.A., Mumtaz, M.W., and Tahir, M.N., Russ. J. Gen. Chem., 2021, vol. 91, p.294. https://doi.org/10.1134/S1070363221020183

    Article  CAS  Google Scholar 

  4. Kalamida, D., Poulas, K., Avramopoulou, V., Fostieri, E., Lagoumintzis, G., Lazaridis, K., and Tzartos, S.J., FEBS J., 2007, vol. 274, p. 3799. https://doi.org/10.1111/j.1742-4658.2007.05935.x

    Article  CAS  Google Scholar 

  5. Backos, D.S., Franklin, C.C., and Reigan, P., Biochem. Pharmacol., 2012, vol. 83, no. 8, p. 1005. https://doi.org/10.1016/j.bcp.2011.11.016

    Article  CAS  Google Scholar 

  6. Jefferies, H., Coster, J., Khalil, A., Bot, J., McCauley, R.D., and Hall, J.C., ANZ J. Surg., 2003, vol. 73, no. 7, p. 517. https://doi.org/10.1046/j.1445-1433.2003.02682.x

    Article  Google Scholar 

  7. Topuzyan, V.O., Hovhannisyan, A.A., Makichyan, A.T., and Hunanyan, L.S., Russ. J. Gen. Chem., 2022, vol. 92, no. 5, p. 819. https://doi.org/10.1134/S1070363222050115

    Article  CAS  Google Scholar 

  8. Küçükgüzel, Ş.G. and Şenkardeş, S., Eur. J. Med. Chem., 2015, vol. 97, p. 786. https://doi.org/10.1016/j.ejmech.2014.11.059

    Article  CAS  Google Scholar 

  9. Khan, M.F., Alam, M.M., Verma, G., Akhtar, W., Akhter, M., and Shaquiquzzaman, M., Eur. J. Med. Chem., 2016, vol. 120, p. 170. https://doi.org/10.1016/j.ejmech.2016.04.077

  10. Wang, W., Liu, X.J., Lin, G.T., Wu, J.P., Xu, G., and Xu, D., Chem. Biodivers., 2022, vol. 19, no. 5, p. e202101032. https://doi.org/10.1002/cbdv.202101032

  11. Kaur, G., Utreja, D., Jain, N., and Dhillon, N.K., Russ. J. Org. Chem., 2020, vol. 56, no. 1, p. 113. https://doi.org/10.1134/S1070428020010182

    Article  CAS  Google Scholar 

  12. Ganguly, S. and Jacob, K.S., Mini-Rev. Med. Chem., 2017, vol. 17, no. 11, p. 959. https://doi.org/10.2174/1389557516666151120115302

  13. Liu, L., Le, Y., Teng, M., Zhou, Z., Zhang, D., Zhao, C., and Cao, J., Dyes Pigm., 2018, vol. 151, p.1. https://doi.org/10.1016/j.dyepig.2017.12.005

    Article  CAS  Google Scholar 

  14. Turkan, F., Cetin, A., Taslimi, P., Karaman, M., and Gulçin, I., Bioorg. Chem., 2019, vol. 86, p. 420. https://doi.org/10.1016/j.bioorg.2019.02.013

  15. Trobe, M., and Burke, M.D., Angew. Chem. Int. Ed., 2018, vol. 57, no. 16, p. 4192. https://doi.org/10.1002/anie.201710482

  16. Hura, N., Naaz, A., Prassanawar, S.S., Guchhait, S.K., and Panda, ACS Omega, 2018, vol. 3, no. 2, p. 1955.

    Article  CAS  Google Scholar 

  17. Renyu, Q., Yuchao, L., Kandegama, W.M., Qiong, C., and Guangfu, Y., Mini-Rev. Med. Chem., 2018, vol. 18, no. 9, p. 781. https://doi.org/10.2174/1389557517666171101112850

    Article  CAS  Google Scholar 

  18. Wiley, J.L., Burston, J.J., Leggett, D.C., Alekseeva, O.O., Razdan, R.K., Mahadevan, A., and Martin, B.R., Br. J. Pharmacol., 2005, vol. 145, no. 3, p. 293. https://doi.org/10.1038/sj.bjp.0706157

    Article  CAS  Google Scholar 

  19. Yao, T.T., Xiao, D.X., Li, Z.S., Cheng, J.L., Fang, S.W., Du, Y.J., and Zhu, G.N., J. Agric. Food Chem., 2017, vol. 65, no. 26, p. 5397. https://doi.org/10.1021/acs.jafc.7b01251

    Article  CAS  Google Scholar 

  20. Dubey, S., Prabitha, P., Bhardwaj, S., and Singh, E., Struct. Chem., 2019, vol. 30, no. 1, p. 263. https://doi.org/10.1007/s11224-018-1189-y

    Article  CAS  Google Scholar 

  21. Kalaria, P.N., Karad, S.C., and Raval, D.K., Eur. J. Med. Chem., 2018, vol. 158, p. 917. https://doi.org/10.1016/j.ejmech.2018.08.040

    Article  CAS  Google Scholar 

  22. Szekely, C.A., Thorne, J.E., Zandi, P.P., Ek, M., Messias, E., Breitner, J.C., and Goodman, S.N., Neuroepidemiology, 2004, vol. 23, p. 159. https://doi.org/10.1159/000078501

    Article  Google Scholar 

  23. Onakpoya, I.J., Heneghan, C.J., and Aronson, J.K., Expert. Opin. Drug Saf., 2018, vol. 17, no. 1, p. 63. https://doi.org/10.1080/14740338.2018.1398232

    Article  Google Scholar 

  24. Greish, K., Fateel, M., Abdelghany, S., Rachel, N., Alimoradi, H., Bakhiet, M., and Alsaie, A., J. Drug Target., 2018, vol. 26, no. 7, p. 610. https://doi.org/10.1080/1061186X.2017.1405427

    Article  CAS  Google Scholar 

  25. Cluck, D., Lewis, P., Stayer, B., Spivey, J., and Moorman, J., Am. J. Health-Syst. Pharm., 2015, vol. 72, no. 24, p. 2135. https://doi.org/10.2146/ajhp150049

    Article  CAS  Google Scholar 

  26. Boyer, E.W., Mejia, M., Woolf, A., and Shannon, M., Pediatrics, 2011, vol. 107, no. 1, p. 172. https://doi.org/10.1542/peds.107.1.172

    Article  Google Scholar 

  27. Ansari, A., Ali, A., and Asif, M., New J. Chem., 2017, vol. 41, p. 16. https://doi.org/10.1039/C6NJ03181A

    Article  CAS  Google Scholar 

  28. Faisal, M., Saeed, A., Hussain, S., Dar, P., and Larik, F.A., J. Chem. Sci., 2019, vol. 131, no. 8, p. 1. https://doi.org/10.1007/s12039-019-1646-1

  29. Turkan, F., Cetin, A., Taslimi, P., Karaman, H.S., and Gulcin, I., Arch. Pharm., 2019, vol. 352, no. 10, p. 1800359. https://doi.org/10.1002/ardp.201800200

  30. Anand. P., and Singh. B., Arch. Pharm. Res., 2013, vol. 36, no. 4, p. 375. https://doi.org/10.1007/s12272-013-0036-3

  31. Daina, A., Michielin, O., and Zoete, V., Sci. Rep., 2017, vol. 7, no. 1, p. 13. https://doi.org/10.1038/srep42717

  32. Hollenberg, P.F., Drug Metab. Rev., 2002, vol. 34, nos. 1–2, p. 35. https://doi.org/10.1081/DMR-120001387

  33. Cetin, A., Bursal, E., and Türkan, F., Arab. J. Chem., 2021, vol. 14, no. 12, p. 103449. https://doi.org/10.1016/j.arabjc.2021.103449

    Article  CAS  Google Scholar 

  34. Boy. S., Türkan, F., Beytur, M., Aras, A., Akyıldırım, O., Karaman, H.S., and Yüksek, H., Bioorg. Chem., 2021, vol. 107, p. 104524. https://doi.org/10.1016/j.bioorg.2020.104524

  35. Adiguzel, R., Türkan, F., Yildiko, Ü., Aras, A., Evren, E., and Onkol, T., J. Mol. Struct., 2021, vol. 1231, p. 129943. https://doi.org/10.1016/j.molstruc.2021.129943

    Article  CAS  Google Scholar 

  36. Habig, W.H., Pabst, M.J., and Jakoby, W.B., J. Biol. Chem., 1974, vol. 249, p. 7130. https://doi.org/10.1016/S0021-9258(19)42083-8

  37. Mathew, N., Kalyanasundaram, M., and Balaraman, K., Expert. Opin. Ther. Pat., 2006, vol. 16, no. 4, p. 444. https://doi.org/10.1517/13543776.16.4.431

    Article  CAS  Google Scholar 

  38. Cetin, A., Türkan, F., Bursal, E., and Murahari, M., Russ. J. Org. Chem., 2021, vol. 57, no. 4, p. 604. https://doi.org/10.1134/S107042802104014X

    Article  Google Scholar 

  39. Ellman, G.L., Courtney, K.D., Andres, Jr.V., and Featherstone, R.M., Biochem. Pharm., 1961, vol. 7, p. 95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cetin.

Ethics declarations

No conflict of interest was declared by the authors.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetin, A., Oguz, E. & Türkan, F. In Silico and In Vitro Analysis of Acetylcholinesteraseand Glutathione S-Transferase Enzymes of Substituted Pyrazoles. Russ J Gen Chem 92, 2415–2428 (2022). https://doi.org/10.1134/S1070363222110263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222110263

Keywords:

Navigation