Skip to main content
Log in

Design, Docking Studies, and Anticancer Activity of Newly Synthesized Monastrol Analogues Bearing Ligustrazine Moiety

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

In order to produce new anti-cancer medications with various effects and minimum toxicity, a series of monastrol derivatives was synthesized by employing many potent anti-tumor aspects of ligustrazine derivatives as starting materials. The “combination principle” in drug discovery enlightened our thinking. Thus, the design and synthesis of monastrol analogues bearing ligustrazine moiety was achieved by the reaction of 2-thioxopyrimidine derivatives with 2-bromomethyl-3,5,6-trimethylpyrazine. Another analogue of monastrol was accomplished by the reaction of 2-thioxopyrimidine derivatives with chloroacetamide, which was then reacted with 2-bromomethyl-3,5,6-trimethylpyrazine to afford ligustrazine-containing monastrol derivatives. The antiproliferative activity was assessed for all monastrol derivatives including ligustrazine nucleus against three major types of human tumor cell lines, including breast MCF-7, colon HCT-116, and liver HepG-2 cancer cell lines. Studies on molecular docking were directed to the most potent cytotoxic compounds within the active site of kinesin Eg5 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Fig. 1.
Scheme
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Cocco, M.T., Congiu, C., Lilliu, V., and Onnis, V., Bioorg. Med. Chem., 2006, vol. 14, no. 2, p. 366. https://doi.org/10.1016/j.bmc.2005.08.012

    Article  CAS  Google Scholar 

  2. Elnaggar, D.H., Mohamed, A.M., Abdel Hafez, N.A., Azab, M.E., Elasasy, M.E., Awad, H.M., Farghaly, T.A., and Amr, A.E.-G.E., ACS Omega, 2022, vol. 7, no. 12, p. 10304. https://doi.org/10.1021/acsomega.1c06951

    Article  CAS  Google Scholar 

  3. Mohamed, A.M., Abdelwahab, M., Elnaggar, D.H., Abde lHafez, N.A.; Mahmoud, S.F., El-Bayaa, M., El-kady, D.S., Omran, M.M., and El-Sayed, W.A., Egypt. J. Chem., 2022, vol. 65, no. 1, p. 1. https://doi.org/10.21608/ejchem.2021.84371.4127

    Article  Google Scholar 

  4. Pedersen, O.S., Petersen, L., Brandt, M., Nielsen, C., and Pedersen, E.B., Monatshefte für Chemie/Chemical Monthly, 1999, vol. 130, no. 12, p. 1499. https://doi.org/10.1007/s007060050310

    Article  CAS  Google Scholar 

  5. Fargualy, A.M., Habib, N.S., Ismail, K.A., Hassan, A.M., and Sarg, M.T., Eur. J. Med. Chem., 2013, vol. 66, p. 276. https://doi.org/10.1016/j.ejmech.2013.05.028

    Article  CAS  Google Scholar 

  6. Hanna, M.M., Eur. J. Med. Chem., 2012, vol. 55, p. 12. https://doi.org/10.1016/j.ejmech.2012.06.048

    Article  CAS  Google Scholar 

  7. Mohana, K.N., Kumar, B.N.P., and Mallesha, L., Drug Inνention Today, 2013, vol. 5, no. 3, p. 216. https://doi.org/10.1016/j.dit.2013.08.004

    Article  CAS  Google Scholar 

  8. Fathalla, O., Awad, S., and Mohamed, M., Arch. Pharm. Res., 2005, vol. 28, no. 11, p. 1205. https://doi.org/10.1007/BF02978199

    Article  CAS  Google Scholar 

  9. Shehta, W. and Abdel Hamid, A.M., Russ. J. Org. Chem., 2020, vol. 56, no. 5, p. 869. https://doi.org/10.1134/S1070428020050218

    Article  CAS  Google Scholar 

  10. El-Mahdy, K.M., and Farouk, O., Russ. J. Org. Chem., 2020, vol. 56, no. 11, p. 2022. https://doi.org/10.1134/S1070428020110172

    Article  CAS  Google Scholar 

  11. Lalpara, J.N., Vachhani, M.D., Hadiyal, S.D., Goswami, S., and Dubal, G.G., Russ. J. Org. Chem., 2021, vol. 57, no. 2, p. 241. https://doi.org/10.1134/S1070428021020159

    Article  CAS  Google Scholar 

  12. Prachayasittikul, S., Worachartcheewan, A., Nantasenamat, C., Chinworrungsee, M., Sornsongkhram, N., Ruchirawat, S., and Prachayasittikul, V., Eur. J. Med. Chem., 2011, vol. 46, no. 2, p. 738. https://doi.org/10.1016/j.ejmech.2010.12.009

    Article  CAS  Google Scholar 

  13. He, Y.-P., Long, J., Zhang, S.-S., Li, C., Lai, C.C., Zhang, C.-S., Li, D.-X., Zhang, D.-H., Wang, H., and Cai, Q.-Q., Bioorg. Med. Chem. Lett., 2011, vol. 21, no. 2, p. 694. https://doi.org/10.1016/j.bmcl.2010.12.003

    Article  CAS  Google Scholar 

  14. Fathalla, O.A.E.-F.M., Ismail, M.A., Anwar, M.M., Abouzid, K.A., and Ramadan, A.A., Med. Chem. Res., 2013, vol. 22, no. 2, p. 659. https://doi.org/10.1007/s00044-012-0051-9

    Article  CAS  Google Scholar 

  15. Leizerman, I., Avunie-Masala, R., Elkabets, M., Fich, A., and Gheber, L., Cell. Mol. Life Sci.CMLS, 2004, vol. 61, no. 16, p. 2060. https://doi.org/10.1007/s00018-004-4074-3

    Article  CAS  Google Scholar 

  16. Haque, S.A., Hasaka, T.P., Brooks, A.D., Lobanov, P.V., and Baas, P.W., Cell Motil. Cytoskelet., 2004, vol. 58, no. 1, p. 10. https://doi.org/10.1002/cm.10176

    Article  CAS  Google Scholar 

  17. Kumar, B.P., Sankar, G., and Baig, R.N., Eur. J. Med. Chem., 2009, vol. 44, no. 10, p. 4192. https://doi.org/10.1016/j.ejmech.2009.05.014

    Article  CAS  Google Scholar 

  18. Kamal, A., Malik, M. S., Bajee, S., Azeeza, S., Faazil, S., Ramakrishna, S.,, Naidu, V., and Vishnuwardhan, M., Eur. J. Med. Chem., 2011, vol. 46, no. 8, p. 3274. https://doi.org/10.1016/j.ejmech.2011.04.048

    Article  CAS  Google Scholar 

  19. Cheng, X., Liu, X., and Xu, W., Drugs Future, 2005, vol. 30, no. 10, p. 1059. https://doi.org/10.1358/dof.2005.030.10.927377

    Article  CAS  Google Scholar 

  20. Pharmacopoeia, C., Commission Chinese Pharmacopoeia, Beijing: People’s Medical Publishing House, 2010, p. 1151.

  21. Ding, M., Luo, S., Liu, H., Chen, P., and Liu, D., Chin. J. Chrom (Se pu), 2000, vol. 18, no. 1, p. 46

    Google Scholar 

  22. Li, Q.-Y., Gao, Y., Qiu, W., Zu, Y.-G.,Su, L., He, W.-N., and Deng, X.-Q., Lett. Drug Des. Discoνery, 2011, vol. 8, no. 8, p. 698. https://doi.org/10.2174/157018011796576006

    Article  CAS  Google Scholar 

  23. Mohamed, A.M., Al-Qalawi, H.R., El-Sayed, W.A., Arafa, W.A., Alhumaimess, M.S., Hassan, A.K., Acta Poloniae Pharm. Drug Res., 2015, vol. 72, p. 307

    CAS  Google Scholar 

  24. Mohamed, A.M., El-Sayed, W.A., Alsharari, M.A., Al-Qalawi, H.R., Germoush, M.O., Arch. Pharm. Res., 2013, vol. 36, no. 9, p. 1055. https://doi.org/10.1007/s12272-013-0163-x

    Article  CAS  Google Scholar 

  25. Amr, A.-G.E., Mohamed, A.M., Mohamed, S.F., AbdelHafez, N.A., and Hammam, A.E.-F.G., Bioorg. Med. Chem., 2006, vol. 14, no. 16, p. 5481. https://doi.org/10.1016/j.bmc.2006.04.045

    Article  CAS  Google Scholar 

  26. Zaijun, Q.F.X. and Liang, Z., Patent Shenzhen Xiaxiwan Pharmaceutical Technology Co., Ltd., Junxia, CN107892673, 2018.

  27. Xu, K., Wang, P., Xu, X., Han, Q., Wang, L., Li, Q., and Lei, H., Anhui Med. Pharm. J., 2013, vol. 17, p. 1467

    CAS  Google Scholar 

  28. Biginelli, C., Gazz. chim. Ital., 1893, vol. 23, no. 1, p. 360.

    Google Scholar 

  29. Kappe, C. O., Tetrahedron, 1993, vol. 49, no. 32, p. 6937. https://doi.org/10.1016/S0040-4020(01)87971-0

    Article  CAS  Google Scholar 

  30. Mohamed, M.S., Awad, S.M., and Ahmed, N.M., Acta Pharm., 2011, vol. 61, no. 2, p. 171. https://doi.org/10.2478/v10007-011-0019-1

    Article  CAS  Google Scholar 

  31. Ragab, F.A., Abou-Seri, S.M., Abdel-Aziz, S.A., Alfayomy, A.M., and Aboelmagd, M., Eur. J. Med. Chem., 2017, vol. 138, p. 140. https://doi.org/10.1016/j.ejmech.2017.06.026

    Article  CAS  Google Scholar 

  32. Mohamed, M.S., Awad, S.M., Zohny, Y.M., and Mohamed, Z.M., Pharmacophore, 2012, vol. 3, no. 1, p. 62.

    CAS  Google Scholar 

  33. Shao, K., Zhang, X., Zhang, X., Xue, D., Ma, L., Zhang, Q., and Liu, H., Chin. J. Chem., 2014, vol. 32, no. 5, p. 443. https://doi.org/10.1002/cjoc.201400095

    Article  CAS  Google Scholar 

  34. Hassan, A.S., Moustafa, G.O., Awad, H.M., Nossier, E.S., and Mady, M.F., ACS Omega, 2021, vol. 6, no. 18, p. 12361. https://doi.org/10.1021/acsomega.1c01604

    Article  CAS  Google Scholar 

  35. Yan, Y., Sardana, V., Xu, B., Homnick, C., Halczenko, W., Buser, C.A., Schaber, M., Hartman, G.D., Huber, H.E., and Kuo, L.C., J. Mol. Biol., 2004, vol. 335, no. 2, p. 547. https://doi.org/10.1016/j.jmb.2003.10.074

    Article  CAS  Google Scholar 

  36. Khattab, R.R., Alshamari, A.K., Hassan, A.A., Elganzory, H.H., El-Sayed, W.A., Awad, H.M., Nossier, E.S., and Hassan, N.A., J. Enzyme Inhib. Med. Chem., 2021, vol. 36, no. 1, p. 504. https://doi.org/10.1080/14756366.2020.1871335

    Article  CAS  Google Scholar 

Download references

Funding

The researchers extend their appreciation to the National Research Center (Dokki, Cairo, Egypt) for funding the work through the research group project no. 12010106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Mohamed.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, A.M., Elnaggar, D.H., Elsayed, M.A. et al. Design, Docking Studies, and Anticancer Activity of Newly Synthesized Monastrol Analogues Bearing Ligustrazine Moiety. Russ J Gen Chem 92, 2400–2414 (2022). https://doi.org/10.1134/S1070363222110251

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222110251

Keywords:

Navigation