Skip to main content
Log in

1,4-Dichalcogenins: Synthesis from Dichloroethenes and Elemental Chalcogens in a Hydrazine Hydrate–Potassium Hydroxide System

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A possibility of the synthesis of 1,4-dichalcogenins by the reaction of vinylidene chloride or 1,2-dichloroethene with elemental chalcogenes in a hydrazine hydrate–KOH system was studied. When vinylidene chloride was used, the maximum yield of 1,4-diselenin was 38%; 1,4-ditellurine was not formed. Diselenin was obtained from 1,2-dichloroethene in 45% yield, while ditellurine was prepared in 21% yield. A plausible mechanism for the formation of dichalcogenin molecules was proposed, which makes it possible to explain the differences in the behavior of 1,1- and 1,2-dichloroethenes in the reaction with potassium telluride. When two chalcogenes were introduced into the reaction, 1,4-dichalcogenins with different chalcogen atoms were obtained with yields of up to 7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

Notes

  1. Quantum-chemical calculations were performed by E.A. Chirkina (Angarsk State Technical University) within the electron density functional theory by the B3LYP/6–311++G(d,p) method in accordance with article [12], which considered the dehydrochlorination of vinylidene chloride in the hydrazine hydrate–alkali system.

REFERENCES

  1. Kobayashi, K. and Gajurel, C.L., Sulfur Rep., 2016, vol. 7, no. 2, p. 123. https://doi.org/10.1080/17415998609410046

    Article  Google Scholar 

  2. Vashchenko, A.V., Kuznetsova, S.Y., and Somina, L.A., J. Struct. Chem., 2012, vol. 53, p. 247. https://doi.org/10.1134/S00224766120200602012

    Article  CAS  Google Scholar 

  3. Meijer, J., Vermeer, P., Verkruijsse, H.D., and Brandsma, L., Recueil, 1973, vol. 92, p. 1326. https://doi.org/10.1002/recl.19730921207

    Article  CAS  Google Scholar 

  4. Potapov, V.A., Amosova, S.V., Doron’kina, I.V., and Glass, R.S., Sulfur Lett., 2003, vol. 26, no. 4, p. 137. https://doi.org/10.1080/0278611031000138018

    Article  CAS  Google Scholar 

  5. Amosova, S.V., Potapov, V.A., Bulakhova, Z.A., and Romanenko, L.S., Sulfur Lett., 1991, vol. 13, no. 4, p. 143.

    CAS  Google Scholar 

  6. Levanova, Е.P., Nikonova, V.S., Grabel’nykh, V.A., Russavskaya, N.V., Albanov, A.I., Rozentsveig, I.B., and Korchevin, N.A., Russ. J. Gen. Chem., 2018, vol. 88, no. 3, p. 383. https://doi.org/10.1134/S1070363218030015

    Article  CAS  Google Scholar 

  7. Levanova, E.P., Nikonova, V.S., Grabel’nykh, V.A., Russavskaya, N.V., Albanov, A.I., Rozentsveig, I.B., and Korchevin, N.A., Russ. J. Org. Chem., 2016, vol. 52, no. 7, p. 1070. https://doi.org/10.1134/S1070428016070307

    Article  CAS  Google Scholar 

  8. Sun, D.-Q. and Yang, J.-K., Synthesis, 2011, no. 15, p. 2454. https://doi.org/10.1055/s-0030-1260066

    Article  CAS  Google Scholar 

  9. Tsuchiya, T., Shimizu, T., and Kamigata, N., J. Am. Chem. Soc., 2001, vol. 123, no. 47, p. 11534. https://doi.org/10.1021/ja0102742

    Article  CAS  PubMed  Google Scholar 

  10. Shimizu, T., Kawaguchi, M., Tsuchiya, T., Hirabayashi, K., and Kamigata, N., J. Org. Chem., 2005, vol. 70, no. 13, p. 5036. https://doi.org/10.1021/jo0502807

    Article  CAS  PubMed  Google Scholar 

  11. Rozentsveig, I.B., Nikonova, V.S., and Korchevin, N.A., Izv. Vuzov, Ser. Prikl. Khim. Biotekhnol., 2019, vol. 9, no. 4, p. 576. https://doi.org/10.21285/2227-2925-2019-9-4-576-589

    Article  CAS  Google Scholar 

  12. Chirkina, E.A., Levanova, E.P., and Krivdin, L.B., Russ. J. Org. Chem., 2017, vol. 53, no. 7, p. 986. https://doi.org/10.1134/S1070428017070053

    Article  CAS  Google Scholar 

  13. Sadekov, I.D. and Minkin, V.I., Russ. Chem. Rev., 1995, vol. 84, no. 6, p. 491. https://doi.org/10.1070/RC1995v064n06ABEH000162

    Article  Google Scholar 

  14. Levanova, E.P., Grabelnykh, V.A., Elaev, A.V., Albanov, A.I., Klyba, L.V., Russavskaya, N.V., Tarasova, O.A., Rozentsveig, I.B., and Korchevin, N.A., J. Sulfur Chem., 2012, vol. 33, no. 5, p. 505. https://doi.org/10.1080/17415993.2012.710909

    Article  CAS  Google Scholar 

  15. Pokonova, Yu.V., Galoidsul’fidy (Halidesulfides), Leningrad: Leningrad. Gos. Univ., 1977.

  16. Huang, X. and Wang, Y.P., Tetrahedron Lett., 1996, vol. 37, no. 41, p. 7417. https://doi.org/10.1016/0040-4039(96)01615-2

    Article  CAS  Google Scholar 

  17. Deryagina, E.N., Korchevin, N.A., Russavskaya, N.V., and Grabel’nykh, V.A., Izv. Akad. Nauk Ser. Khim., 1998, no. 9, p. 1874.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The study were carried out using the material and technical base of the Baikal Analytical Center for Collective Use of the Siberian Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Grabelnykh.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 5, pp. 728–734 https://doi.org/10.31857/S0044460X21050097.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikonova, V.S., Grabelnykh, V.A., Bogdanova, I.N. et al. 1,4-Dichalcogenins: Synthesis from Dichloroethenes and Elemental Chalcogens in a Hydrazine Hydrate–Potassium Hydroxide System. Russ J Gen Chem 91, 814–819 (2021). https://doi.org/10.1134/S1070363221050091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221050091

Keywords:

Navigation