Skip to main content
Log in

Synthesis of Novel Mononuclear Lanthanide (Ln3+) Complexes with Indole-3-acetic Acid Hormone, Their Structure and Properties Based on Spectroscopic and In Silico Studies

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

New Gd3+, Ce3+, Sm3+, and Nd3+ complexes of indole-3-acetic acid hormone have been synthesized and analyzed by IR, Raman and UV-Vis spectra, XRD, analytical (elemental, EXD, SEM), and theoretical methods. IR spectra of complexes support eight (Gd3+ and Ce3+) and nine (Sm3+ and Nd3+) -fold coordinations via three ligands in their mononegative bidentate mode. Broadness in Raman spectrum of Ce3+ complex, reflects the possibility for its luminescence or conductivity features. UV-Vis spectra demonstrate weak intraconfigurational 4f–4f transitions within polyhedral geometry, which is known for such inner-transition ions. For most complexes, the optical band gap values have been calculated to be similar to that of the ligand, and the value calculated for Ce3+ complex is significantly low, which predicts its semiconductors-like feature. XDR patterns support nano-crystalline nature of HL complex with Sm3+. Hirshfeld contact surface has been obtained for two representative complexes (Gd3+ and Sm3+) by normalized contact distance d norm, de, and di models. In-silico study based on drug-likeness software as well as MOE-docking approach have been carried out. Complexes of Gd3+ and Sm3+ probably can stimulate auxin hormone or raise its efficiency within a plant, which leads to favorable economic and positive results for plant wealth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Darwin, C. and Darwin, F., The Power of Movement in Plants, London: Murray, 1880.

  2. Fu, S.-F., Wei, J.-Y., Chen, H.-Wei, Liu, Y.-Y., Lu, H.-Y., and Chou, J.-Y., Plant Signal Behav., 2015, vol. 10(8), p. e1048052. https://doi.org/10.1080/15592324.2015.1048052

  3. Spaepen, S., Vanderleyden, J., and Remans, R., FEMS Microbiol Rev., 2007, vol. 31, p. 425. https://doi.org/10.1111/j.1574-6976.2007.00072.x

    Article  CAS  PubMed  Google Scholar 

  4. Olea-Román, D., Bélanger-Desmarais, N., FloresÁlamo, M., Bazán, C., Thouin, F., Reber, C., Castillo-Blum, S.E., Dalton Trans., 2015, vol. 44, p. 17175. https://doi.org/10.1039/C5DT02563J

    Article  CAS  PubMed  Google Scholar 

  5. Ren, Z., Wei, Z., Wang, L., Ma, J., and Dong, W., New Crystal Structures, 2018, vol. 233(5), p. 795. https://doi.org/10.1515/ncrs-2017-0419

    Article  CAS  Google Scholar 

  6. Reji, T.F.A.F., Pearl, A.J., and Rosy, B.A., J. Rare Earth, 2013, vol. 31(10), p. 1009. https://doi.org/10.1016/S1002-0721(13)60022-8

    Article  CAS  Google Scholar 

  7. Andiappan, K., Sanmugam, A., Andiappan, K., Deivanayagam, E., Karuppasamy, K., Kim, H.-S., and Vikraman, D., Sci. Rep. UK 8, 2018, vol. 1, p. 3054. https://doi.org/10.1038/s41598-018-21366-1

    Article  CAS  Google Scholar 

  8. Zhao, Q., An, X.-X., Liu, L.-Z., and Dong, W.-K., Inorg. Chim. Acta, 2019, vol. 490, p. 6. https://doi.org/10.1016/j.ica.2019.02.040

    Article  CAS  Google Scholar 

  9. Vogel, A.I., Text Book of Quantitative Inorganic Analysis, London: Longman, 1986.

  10. Dennington, R., Keith, T., and Millam, J., Gauss View, Version 4.1.2, SemichemInc, Shawnee Mission, KS, 2007.

  11. El-Ayaan, U., El-Metwally, N.M., Youssef, M.M., and El Bialy, S.A.A., Spectrochim. Acta A, 2007, vol. 68, p. 1278. https://doi.org/10.1016/j.saa.2007.02.011

    Article  CAS  Google Scholar 

  12. Abumelha, H.M., Al-Fahemi, J.H., Althagafi, I., Bayazeed, A.A., Al-Ahmed, Z.A., Khedr, A.M., and El-Metwaly, N., J. Inorg. Organomet. Polym Mater., 2020, vol. 30, p. 3277. https://doi.org/10.1007/s10904-020-01503-y

    Article  CAS  Google Scholar 

  13. Althagafi, I., El-Metwaly, N., and Farghaly, T.A., Molecules, 2019, vol. 24, p. 1741. https://doi.org/10.3390/molecules24091741

  14. Geary, W.J., J. Coord. Chem. Rev., 1971, vol. 7, p. 81. https://doi.org/10.1016/S0010-8545(00)80009-0

    Article  CAS  Google Scholar 

  15. Saad, F.A., Al-Fahemi, J.H., El-Ghamry, H., Khedr, A.M., Elghalban, M.G., and El-Metwaly, N.M., J. Therm. Anal. Calorim., 2018, vol. 131, p. 1249. https://doi.org/10.1007/s10973-016-6054-x

    Article  CAS  Google Scholar 

  16. El-Megharbel, S.M., El-Metwaly, N.M., and Refat, M.S., Spectrochim. Acta A, 2015, vol. 149, p. 263. https://doi.org/10.1016/j.saa.2015.04.069

    Article  CAS  Google Scholar 

  17. Lever, A.B.P., Inorganic Electronic Spectroscopy, Amsterdam: Elsevier, 1986.

  18. Mott, N.F. and Davis, E.A., Electrochemical Process in Non-Crystalline Materials, Oxford: Calendron Press, 1979.

  19. Sen, P., Mpeta, L.S., Mack, J., and Nyokong, T., J. Lumin., 2020, vol. 224, p. 117262. https://doi.org/10.1016/j.jlumin.2020.117262

    Article  CAS  Google Scholar 

  20. Refat, M.S. and El-Metwaly, N.M., Spectrochim. Acta A, 2011, vol. 81, p. 215. https://doi.org/10.1016/j.saa.2011.05.108

    Article  CAS  Google Scholar 

  21. Cullity, B.D., Elements of X-Ray Diffraction, 2nd ed., Addison–Wesley Inc., 1993.

  22. Momma, K. and Izumi, F., J. Appl. Crystallogr., 2011, vol. 44, p. 1272. https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  23. Turner, M.J., McKinnon, J.J., Jayatilaka, D., and Spackman, M.A., Cryst. Eng. Comm., 2011, vol. 13, p. 1804. https://doi.org/10.1039/C0CE00683A

    Article  CAS  Google Scholar 

  24. Seth, S.K., Sarkar, D., and Kar, T., Cryst. Eng. Comm., 2011, vol. 13, p. 4528. https://doi.org/10.1039/C1CE05037K

    Article  CAS  Google Scholar 

  25. El-Metwaly, N., Farghaly, T.A., and Elghalban, M.G., Appl Organometal Chem., 2020, vol. 34(4), p. e5505. https://doi.org/10.1002/aoc.5505

  26. Al-Hazmi, G.A.A., Abou-Melha, K.S., El-Metwaly, N.M., Althagafi, I., Shaaban, F., Elghalban, M.G., and ElGamil, M.M., Appl. Organomet. Chem., 2019, vol. 34, p. e5408. https://doi.org/10.1002/aoc.5408

Download references

Funding

Taif University Researches Supporting Project number (TURSP-2020/01), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. El-Metwaly.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Refat, M.S., Sayqal, A., Abumelha, H.M. et al. Synthesis of Novel Mononuclear Lanthanide (Ln3+) Complexes with Indole-3-acetic Acid Hormone, Their Structure and Properties Based on Spectroscopic and In Silico Studies. Russ J Gen Chem 91, 717–725 (2021). https://doi.org/10.1134/S1070363221040228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221040228

Keywords:

Navigation