Skip to main content
Log in

Antifungal active tetraaza macrocyclic transition metal complexes: Designing, template synthesis, and spectral characterization

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Eight novel macrocyclic complexes as candidates of antifungal agent were designed and synthesized by incorporating an N4 donor site via the template condensation of 4,4′-diaminodiphenylmethane, formaldehyde. p-anisidine, and metal salts. The structural features were determined on the basis of their elemental analyses, magnetic susceptibility, molar conductance, FAB Mass, UV-Vis, and IR spectral data. Electronic absorption spectral data of the complexes suggest a square-planar geometry around the central metal ion except the VO(IV) complex, which shows square-pyramidal geometry. The stoichiometry of the complexes had been found to be 1: 1 (metal: ligand). Electrolytic nature of the complexes is assessed from their high conductance data. Monomeric nature of the complexes is confirmed from magnetic susceptibility values. The X-band ESR spectra of the Cu(II) and VO(IV) complexes in DMSO at 300 and 77 K were recorded, and their salient features are reported. The antifungal activity of the macrocyclic metal complexes were screened in vitro against Aspergillus niger, Aspergillus fluvus, Trichoderma harizanum, Trichoderma viridae, and Rhizoctonia solani. The data showed that they possessed antifungal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Srinivasan, S., Athappan, P., and Rajagopal, G., Transition Met. Chem., 2001, vol. 26, p. 588.

    Article  CAS  Google Scholar 

  2. Franco, E., Torres, E.L., Mendiola, M.A., and Sevilla, M.T., Polyhedron, 2000, vol. 19, p. 441.

    Article  CAS  Google Scholar 

  3. Ashu, C., and Singh, R.V., Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 2001, vol. 40, p. 1330.

    Google Scholar 

  4. Chitra, G., Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 2002, vol. 41, p. 763.

    Google Scholar 

  5. Biyala, M.K., Fahmi, N., and Singh, R.V., Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 2004, vol. 43, p. 2536.

    Google Scholar 

  6. Singh, N.K., Singh, S.B., Singh, D.K., and Chauhan, V.B., Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 2003, vol. 42, p. 2767.

    Google Scholar 

  7. Venkatesvvar Rao, P. and Venkata Narasaiah, A., Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 2003. vol. 42. p. 1896.

    Google Scholar 

  8. Kong, D., Meng, L., Song, L., and Xie, Y., Transition Met. Chem., 1999, vol. 24, p. 553.

    Article  CAS  Google Scholar 

  9. Al-Sha’alan, N.H. and Riyadh, P.O., Molecules, 2007, vol. 12, p. 1080.

    Article  CAS  Google Scholar 

  10. Irobi, O.N., Moo-Young, M., and Anderson, W.A., Int. J. Pharm., 1996, vol. 34, p. 87.

    Article  Google Scholar 

  11. Reiner, R., Antibiotics—An Introduction, Switzerland: Roche Scientific Services, 1992, vol. 1, p. 21.

    Google Scholar 

  12. Shakir, M., Kumar, D., and Varkey, S.P., Polyhedron, 1992, vol. 11, p. 2831.

    Article  CAS  Google Scholar 

  13. Navaneetha, N., Nagarjun, P.A., and Satyanarayanan, S., J. Chem. Sci., 2007, vol. 119, p. 29.

    Article  CAS  Google Scholar 

  14. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1997.

    Google Scholar 

  15. Efthimiadou, E.K., Sanakis, Y., Katsaros, N., et al., Polyhedron, 2007, vol. 26, p. 1148.

    Article  CAS  Google Scholar 

  16. Warad, D.U., Satish, C.D., Kulkarni, V.H., and Bajgur, C.S., Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 2000, vol. 39, p. 415.

    Google Scholar 

  17. Lever, A.B.P., Inorganic Electronic Spectroscopy, New York: Elsevier, 1968.

    Google Scholar 

  18. Mishra, L. and Singh, V.K., Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 1993, vol. 32, p. 446.

    Google Scholar 

  19. Sharma, P., Chand, M., and Nagar, M., Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 2003, vol. 42, p. 2778.

    Google Scholar 

  20. Sharma, A.L., Singh, I.O., Singh, M.A., and Singh, H.R., Transition Met. Chem., 2001, vol. 26, p. 532.

    Article  CAS  Google Scholar 

  21. Ray, R.K. and Kauffman, G.R., Inorg. Chim. Acta, 1990, vol. 173, p. 207.

    Article  CAS  Google Scholar 

  22. Yen, T.F., Electron Spin Resonance of Metal Complexes, New York: Plenum Press, 1969.

    Google Scholar 

  23. Anjaneyula, Y. and Rao, R.P., Inorg. Met.-Org. Chem., 1986, vol. 16, p. 257.

    Article  Google Scholar 

  24. Srivastava, R.S., Inorg. Chim. Acta, 1981, vol. 56, p. L65.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Raman.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raman, N. Antifungal active tetraaza macrocyclic transition metal complexes: Designing, template synthesis, and spectral characterization. Russ J Coord Chem 35, 234–238 (2009). https://doi.org/10.1134/S1070328409030129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328409030129

Keywords

Navigation