Skip to main content

Advertisement

Log in

Condensates of SARS-CoV-2 Nucleoprotein on Viral RNA and Their Small Molecule Modulators (A Review)

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The liquid−liquid phase separation phase separation phenomenon has been described for some biopolymers and has been studied in sufficient detail for a few proteins with intrinsically disordered regions. One example of such proteins is the nucleocapsid (N) protein of the severe acute respiratory syndrome coronavirus 2. In this review, we have analyzed available data on N-protein separation in the presence of viral RNA. Particular attention has been paid to transient contacts within the condensates and the N-protein/RNA fragments that form these contacts. The modern concepts of the role of the condensates in the SARS-CoV-2 life cycle and their influence on the host-protective machinery have been summarized. Finally, comments on the possibility of regulating the viral condensates using synthetic or natural small molecules (phase separation modulators), which can provide a new option in the design of antiviral agents, are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Aleem, A., Akbar Samad, A.B., and Slenker, A.K., Emerging Variants of SARS-CoV-2 and Novel Therapeutics Against Coronavirus (COVID-19). In: StatPearls. Treasure Island (FL): StatPearls, 2022. https://pubmed.ncbi.nlm.nih.gov/34033342/

  2. Huang, Y., Yang, C., Xu, X., Xu, W., and Liu, S., Acta Pharmacol. Sin., 2020, vol. 41, pp. 1141–1149. https://doi.org/10.1038/s41401-020-0485-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ullrich, S. and Nitsche, C., Bioorg. Med. Chem. Lett., 2020, vol. 30, p. 127377. https://doi.org/10.1016/j.bmcl.2020.127377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Uengwetwanit, T., Chutiwitoonchai, N., Wichapong, K., and Karoonuthaisiri, N., Comput. Struct. Biotechnol. J., 2022, vol. 20, pp. 882–890. https://doi.org/10.1016/j.csbj.2022.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bai, Z., Cao, Y., Liu, W., and Li, J., Viruses, 2022, vol. 13, p. 1115. https://doi.org/10.3390/v13061115

    Article  CAS  Google Scholar 

  6. Yao, H., Song, Y., Chen, Y., Wu, N., Xu, J., Sun, C. Zhang, J., Weng, T., Zhang, Z., Wu, Z., Cheng, L., Shi, D., Lu, X., Lei, J., Crispin, M., Shi, Y., Li, L., and Li, S., Cell, 2020, vol. 183, pp. 730–738., E13. https://doi.org/10.1016/j.cell.2020.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lu, S., Ye, Q., Singh, D., Cao, Y., Diedrich, J.K., Yates III, J.R. Villa, E., Cleveland, D.W., and Corbett, K.D., Nat. Commun., 2021, vol. 12, p,. 502. https://doi.org/10.1038/s41467-020-20768-y

  8. Cubuk, J., Alston, J.J., Incicco, J.J., Singh, S., Stuchell-Brereton, M.D., Ward, M.D., Zimmerman, M.I., Vithani, N., Griffith, D., Wagoner, J.A., Bowman, G.R., Hall, K.B., Soranno, A., and Holehouse, A.S., Nat. Commun., 2021, vol. 12, p. 1936. https://doi.org/10.1038/s41467-021-21953-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, B., Zhang, L., Dai, T., Qin, Z., Lu, H., Zhang, L., and Zhou, F., Signal Transduct. Target. Ther., 2021, vol. 6, p. 290. https://doi.org/10.1038/s41392-021-00678-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, H., Ernst, C., Kolonko-Adamska, M., Man, J., Parissi, V., Wai-Lung Ng, B., Trends Microbiol., 2022, vol. 30, pp. 1217–1231. https://doi.org/10.1016/j.tim.2022.06.005

    Article  CAS  PubMed  Google Scholar 

  11. Bäuerlein, F.J.B., Fernández-Busnadiego, R., and Baumeister, W., Trends Cell. Biol., 2020, vol. 30, pp. 951–966. https://doi.org/10.1016/j.tcb.2020.08.007

    Article  CAS  PubMed  Google Scholar 

  12. Savastano, A., Ibáñez de Opakua, A., Rankovic, M., and Zweckstetter, M., Nat. Commun., 2020, vol. 11, pp. 6041. https://doi.org/10.1038/s41467-020-19843-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cascarina, S.M. and Ross, E.D., FASEB J., 2020, vol. 34, pp. 9832–9842. https://doi.org/10.1096/fj.202001351

    Article  CAS  PubMed  Google Scholar 

  14. Cascarina, S.M. and Ross, E.D., J. Biol. Chem., 2022, vol. 298, pp. 101677. https://doi.org/10.1016/j.jbc.2022.101677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dang, M. and Song, J., Biophys. Rev., 2022, vol. 14, pp. 709–715. https://doi.org/10.1007/s12551-022-00957-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alberti, S., Gladfelter, A., and Mittag, T., Cell, 2019, vol. 176, pp. 419–434. https://doi.org/10.1016/j.cell.2018.12.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abyzov, A., Blackledge, M., and Zweckstetter, M., Chem. Rev., 2022, vol. 122, pp. 6719–674. https://doi.org/10.1021/acs.chemrev.1c00774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Titus, A.R., Ferreira, L.A., Belgovskiy, A.I., Kooijman, E.E., Mann, E.K., Mann, J.A., Meyer, W.V., Smart, A.E., Uversky, V.N., and Zaslavsky, B.Y., Phys. Chem. Chem. Phys., 2020, vol. 22, pp. 4574–4580. https://doi.org/10.1039/C9CP05810A

    Article  CAS  PubMed  Google Scholar 

  19. Jo, Y., Jang, J., Song, D., Park, H., and Jung, Y., Chem. Sci., 2022, vol. 13, pp. 522–530. https://doi.org/10.1039/D1SC05672G

    Article  CAS  PubMed  Google Scholar 

  20. O’Flynn, B.G. and Mittag, T., Curr. Opin. Cell. Biol., 2021, vol. 69, pp. 70–79. https://doi.org/10.1016/j.ceb.2020.12.012

    Article  CAS  PubMed  Google Scholar 

  21. Brocca, S., Grandori, R., Longhi, S., and Uversky, V., Int. J. Mol. Sci., 2020, vol. 21. P 9045. https://doi.org/10.3390/ijms21239045

  22. Zhou, R., Zeng,, R., von Brunn, A., and Lei, J., Mol. Biomed., 2020, vol. 1, p. 2. https://doi.org/10.1186/s43556-020-00001-4

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang, S., Dai, T., Qin, Z., Pan, T., Chu, F., Lou, L., Zhang, L., Yang, B., Huang, H., Lu, H., and Zhou, F., Nat. Cell. Biol., 2021, vol. 23, pp. 718–732. https://doi.org/10.1038/s41556-021-00710-0

    Article  CAS  PubMed  Google Scholar 

  24. Roden, C.A., Dai, Y., Giannetti, C.A., Seim, I., Lee, M., Sealfon, R., McLaughlin, G.A., Boerneke, M.A., Iserman, C., Wey, S.A., Ekena, J.L, Troyanskaya, O.G., Weeks, K.M., You, L., Chilkoti, A., and Gladfelter, A.S., Nucleic Acids Res., 2022, vol. 50, pp. 8168–8192. https://doi.org/10.1093/nar/gkac596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iserman, C., Roden, C.A., Boerneke, M.A., Sealfon, R.S.G., McLaughlin, G.A., Jungreis, I., Fritch, E.J., Hou, Y.J., Ekena, J., Weidmann, C.A., Theesfeld, C.L., Kellis, M., Troyanskaya, O.G., Baric, R.S., Sheahan, T.P., Weeks, K.M., and Gladfelter, A.S., Mol. Cell., 2020, vol. 80, pp. 1078–1091.E6. https://doi.org/10.1016/j.molcel.2020.11.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Riback, J.A., Zhu, L., Ferrolino, M.C., Tolbert, M., Mitrea, D.M., Sanders, D.W., Wei, M.-T., Kriwacki, R.W., and Brangwynne, C.P., Nature, 2020, vol. 581, pp. 209–214. https://doi.org/10.1038/s41586-020-2256-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weidmann, C.A., Mustoe, A.M., Jariwala, P.B., Calabrese, J.M., and Weeks, K.M., Nat. Biotechnol., 2021, vol. 39, pp. 347–356. https://doi.org/10.1038/s41587-020-0709-7

    Article  CAS  PubMed  Google Scholar 

  28. Zachrdla, M., Savastano, A., Ibáñez de Opakua, A., Cima-Omori, M. S., and Zweckstetter, M., Protein Sci., 2022, vol. 31, pp. e4409. https://doi.org/10.1002/pro.4409

  29. Banani, S.F., Rice, A.M., Peeples, W.B., Lin, Y., Jain, S., Parker, R., and Rosen, M.K., Cell, 2016, vol. 166, pp. 651–663. https://doi.org/10.1016/j.cell.2016.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi, J.-M., Holehouse, A.S., and Pappu, R.V., Annu. Rev. Biophys., 2020, vol. 49, pp. 107–133. https://doi.org/10.1146/annurev-biophys-121219-081629

    Article  CAS  PubMed  Google Scholar 

  31. Lin, Y.-H., Brady, J.P., Chan, H.S., and Ghosh, K., J. Chem. Phys., 2020, vol. 152, pp. 045102. https://doi.org/10.1063/1.5139661

    Article  CAS  Google Scholar 

  32. Supekar, N.T., Shajahan, A., Gleinich, A.S., Rouhani, D.S., Heiss, C., Chapla, D.G., Moremen, K.W., and Azadi, P., Glycobiology, 2021, vol. 31, pp. 1080–1092. https://doi.org/10.1093/glycob/cwab044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu, J., Zhong, Y., Liu, X., Lu, X., Zeng, W., Wu, C., Xing, F., Cao, L., Zheng, F., Hou, P., Peng, H., Li, C., and Guo, D., J. Mol. Cell. Biol., 2022, vol. 14, p. mjac003. https://doi.org/10.1093/jmcb/mjac003

  34. Wang, J., Choi, J.-M., Holehouse, A.S., Lee, H.O., Zhang, X., Jahnel, M., Maharana, S., Lemaitre, R., Pozniakovsky, A., Drechsel, D., Poser, I., Pappu, R.V., Alberti, S., and Hyman, A.A., Cell, 2018, vol. 174, pp. 688–699. E16. https://doi.org/10.1016/j.cell.2018.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vernon, R.M., Chong, P.A., Tsang, B., Kim, T.H., Bah, A., Farber, P., Lin, H., Forman-Kay, J.D., eLife, 2018, vol. 7, pp. e31486. https://doi.org/10.7554/eLife.31486

  36. Caruso, I.P., dos Santos Almeida, V., do Amaral, M.J., de Andrade, G.C., de Araújo, G.R., de Araújo, T.S., de Azevedo, J.M., Barbosa, G.M., Bartkevihi, L., Bezerra, P.R., dos Santos Cabral, K.M., de Lourenço, I.O., Malizia-Motta, C.L.F., de Luna Marques, A., Mebus-Antunes, N.C., Neves-Martins, T.C., de Sá, J.M., Sanches, K., Santana-Silva, M.C., Vasconcelos, A.A., da Silva Almeida, M., de Amorim, G.C., Anobom, C.D., da Poian, A.T., Gomes-Neto, F., Pinheiro, A.S., and Almeida, F.C.L., Int. J. Biol. Macromol., 2022, vol. 203, pp. 466–480. https://doi.org/10.1016/j.ijbiomac.2022.01.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao, H., Nguyen, A., Wu, D., Li, Y., Hassan, S.A., Chen, J., Shroff, H., Piszczek, G., and Schuck, P., PNAS Nexus, 2022, vol. 1, p. pgac049. https://doi.org/10.1093/pnasnexus/pgac049

  38. Bogunia, M., and Makowski, M., J. Phys. Chem. B, 2020, vol. 124, pp. 10326–10336. https://doi.org/10.1021/acs.jpcb.0c06399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gao, T., Gao, Y., Liu, X., Nie, Z., Sun, H., Lin, K., Peng, H., and Wang, S., BMC Microbiol., 2021, vol. 21, p. 58. https://doi.org/10.1186/s12866-021-02107-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dang, M., Li, Y., and Song, J., Biochem. Biophys. Res. Commun., 2021, vol. 541, pp. 50–55. https://doi.org/10.1016/j.bbrc.2021.01.018,

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, D., Lee, J.-Y., Yang, J.-S., Kim, J.W., Kim, V.N., and Chang, H., Cell, 2020, vol. 181, pp. 914–921. E10. https://doi.org/10.1016/j.cell.2020.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Malone, B., Urakova, N., Snijder, E.J., and Campbell, E.A., Nat. Rev. Mol. Cell Biol., 2022, vol. 23, pp. 21–39. https://doi.org/10.1038/s41580-021-00432-z

    Article  CAS  PubMed  Google Scholar 

  43. Ziv, O., Price, J., Shalamova, L., Kamenova, T., Goodfellow, I., Weber, F., and Miska, E.A., Mol. Cell, 2022, vol. 80, pp. 1067–1077. E5. https://doi.org/10.1016/j.molcel.2020.11.004

    Article  CAS  Google Scholar 

  44. Klein, S., Cortese, M., Winter, S.L., Wachsmuth-Melm, M., Neufeldt, C.J., Cerikan, B., Stanifer, M.L., Boulant, S., Bartenschlager, R., and Chlanda, P., Nat. Commun., 2020, vol. 11, p. 5885. https://doi.org/10.1038/s41467-020-19619-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, Z., Nomura, N., Muramoto, Y., Ekimoto, T., Uemura, T., Liu, K., Yui, M., Kono, N., Aoki, J., Ikeguchi, M., Noda, T., Iwata, S., Ohto, U., and Shimizu, T., Nat. Commun., 2022, vol. 13, p. 4399. https://doi.org/10.1038/s41467-022-32019-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Perdikari, T.M., Murthy, A.C., Ryan, V.H., Watters, S., Naik, M.T., and Fawzi, N.L., EMBO J., 2020, vol. 39, p. e106478. https://doi.org/10.15252/embj.2020106478

  47. Luo, L., Li, Z., Zhao, T., Ju, X., Ma, P., Jin, B., Zhou, Y., He, S., Huang, J., Xu, X., Zou, Y., Li, P., Liang, A., Liu, J., Chi, T., Huang, X., Ding, Q., Jin, Z., Huang, C., Zhang, Y., Sci. Bull. (Beijing), 2021, vol. 66, pp. 1194–1204. https://doi.org/10.1016/j.scib.2021.01.013

    Article  CAS  PubMed  Google Scholar 

  48. Wang, W., Chen, J., Yu, X., and Lan, H.Y., Int. J. Biol. Sci., 2022, vol. 18, pp. 4704–4713. https://doi.org/10.7150/ijbs.72663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oh, S.J. and Shin, O.S., Cells, 2021, vol. 10. p. 530. https://doi.org/10.3390/cells10030530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu, Y., Ma, L., Cai, S., Zhuang, Z., Zhao, Z., Jin, S., Xie, W., Zhou, L., Zhang, L., Zhao, J., and Cui, J., Signal Transduct. Target. Ther., 2021, vol. 6, p. 167. https://doi.org/10.1038/s41392-021-00575-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tay, M.Z., Poh, C.M., Rénia, L., MacAry, P.A., and Ng, L.F.P., Nat. Rev. Immunol., 2020, vol. 20, pp. 363–374. https://doi.org/10.1038/s41577-020-0311-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dang, M. and Song, J., Protein Sci., 2022, vol. 31, pp. 345–356. https://doi.org/10.1002/pro.4221

    Article  CAS  PubMed  Google Scholar 

  53. Patel, A., Malinovska, L., Saha, S., Wang, J., Alberti, S., Krishnan, Y., and Hyman, A.A., Science, 2017, vol. 356, pp. 753–756. https://doi.org/10.1126/science.aaf6846

    Article  CAS  PubMed  Google Scholar 

  54. Song, J., Protein Sci., 2021, vol. 30, pp. 1277–93. https://doi.org/10.1002/pro.4079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kang, J., Lim, L., Lu, Y., and Song, J., PLoS Biol., 2019, vol. 17, pp. 1–33. https://doi.org/10.1371/journal.pbio.3000327

    Article  CAS  Google Scholar 

  56. Dinesh, D.C., Chalupska, D., Silhan, J., Koutna, E., Nencka, R., Veverka, V., and Boura, E., PLoS Pathog., 2020, vol. 16, pp. 1–16. https://doi.org/10.1371/journal.ppat.1009100

    Article  CAS  Google Scholar 

  57. Zhao, D., Xu, W., Zhang, X., Wang, X., Ge, Y., Yuan, E., Xiong, Y., Wu, S., Li, S., Wu, N., Tian, T., Feng, X., Shu, H., Lang, P., Li, J., Zhu, F., Shen, X., Li, H., Li, P., and Zeng, J., Protein Cell, 2021, vol. 12, pp. 734–740. https://doi.org/10.1007/s13238-021-00832-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao, M., Yu, Y., Sun, L.-M., Xing, J.-Q., Li, T., Zhu, Y., Wang, M., Yu, Y., Xue, W., Xia, T., Cai, H., Han, Q.-Y., Yin, X., Li, W.-H., Li, A.-L., Cui, J., Yuan, Z., Zhang, R., Zhou, T., Zhang, X.-M., and Li, T., Nat. Commun., 2021, vol. 12, p. 2114. https://doi.org/10.1038/s41467-021-22297-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gorąca, A., Huk-Kolega, H., Piechota, A., Kleniewska, P., Ciejka, E., and Skibska, B., Pharmacol. Rep., 2011, vol. 63, pp. 849–858. https://doi.org/10.1016/S1734-1140(11)70600-4

    Article  PubMed  Google Scholar 

  60. Gordon, D.E., Jang, G.M., Bouhaddou, M., Xu, J., Obernier, K., White, K.M., O’Meara, M.J., Rezelj, V.V., Guo, J.Z., Swaney, D.L., Tummino, T.A., Hüttenhain, R., Kaake, R.M., Richards, A.L., Tutuncuoglu, B., Foussard, H., Batra, J., Haas, K., Modak, M., Kim, M., Haas, P., Polacco, B.J., Braberg, H., Fabius, J.M., Eckhardt, M., Soucheray, M., Bennett, M.J., Cakir, M., McGregor, M.J., Li, Q., Meyer, B., Roesch, F., Vallet, T., Mac Kain, A., Miorin, L., Moreno, E., Naing, Z.Z.C., Zhou, Y., Peng, S., Shi, Y., Zhang, Z., Shen, W., Kirby, I.T., Melnyk, J.E., Chorba, J.S., Lou, K., Dai, S.A., Barrio-Hernandez, I., Memon, D., Hernandez-Armenta, C., Lyu, J., Mathy, C.J.P., Perica, T., Pilla, K.B., Ganesan, S.J., Saltzberg, D.J., Rakesh, R., Liu, X., Rosenthal, S.B., Calviello, L., Venkataramanan, S., Liboy-Lugo, J., Lin, Y., Huang, X.P., Liu, Y., Wankowicz, S.A., Bohn, M., Safari, M., Ugur, F.S., Koh, C., Savar, N.S., Tran, Q.D., Shengjuler, D., Fletcher, S.J., O’Neal, M.C., Cai, Y., Chang, J.C.J., Broadhurst, D.J., Klippsten, S., Sharp, P.P., Wenzell, N.A., Kuzuoglu-Ozturk, D., Wang, H.Y., Trenker, R., Young, J.M., Cavero, D.A., Hiatt, J., Roth, T.L., Rathore, U., Subramanian, A., Noack, J., Hubert, M., Stroud, R.M., Frankel, A.D., Rosenberg, O.S., Verba, K.A., Agard, D.A., Ott, M., Emerman, M., Jura, N., von Zastrow, M., Verdin, E., Ashworth, A., Schwartz, O., d’Enfert, C., Mukherjee, S., Jacobson, M., Malik, H.S., Fujimori, D.G., Ideker, T., Craik, C.S., Floor, S.N., Fraser, J.S., Gross, J.D., Sali, A., Roth, B.L., Ruggero, D., Taunton, J., Kortemme, T., Beltrao, P., Vignuzzi, M., García-Sastre, A., Shokat, K.M., Shoichet, B.K., and Krogan, N.J., Nature, 2020, vol. 583, pp. 459–468. https://doi.org/10.1038/s41586-020-2286-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wheeler, R.J., Lee, H.O., Poser, I., Pal, A., Doeleman, T., Kishigami, S., Kour, S., Anderson, E.N., Marrone, L., Murthy, A.C., Jahnel, M., Zhang, X., Boczek, E., Fritsch, A., Fawzi, N.L., Sterneckert, J., Pandey, U., David, D.C., Davis, B.G., Baldwin, A.J., Hermann, A., Bickle, M., Alberti, S., and Hyman, A.A., bioRxiv, 2019. https://doi.org/10.1101/721001

  62. Itoh, Y., Iida, S., Tamura, S., Nagashima, R., Shiraki, K., Goto, T., Hibino, K., Ide, S., and Maeshima, K., Life Sci. Alliance, 2021, vol. 4, p. e202001005. https://doi.org/10.26508/lsa.202001005

  63. Blount, K.F., Zhao, F., Hermann, T., and Tor, Y., J. Am. Chem. Soc., 2005, vol. 127, pp. 9818–9829. https://doi.org/10.1021/ja050918w

    Article  CAS  PubMed  Google Scholar 

  64. Svetlova, J., Knizhnik, E., Manuvera, V., Severov, V., Shirokov, D., Grafskaia, E., Bobrovsky, P., Matyugina, E., Khandazhinskaya, A., Kozlovskaya, L., Miropolskaya, N., Aralov, A., Khodarovich, Y., Tsvetkov, V., Kochetkov, S., Lazarev, V., and Varizhuk, A., Int. J. Mol. Sci., 2022, vol. 23, pp. 15281. https://doi.org/10.3390/ijms232315281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was financially supported by the President of the Russian Federation (grant no. MD-5000.2022.3) and the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-1049).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed have made equal contributions to this review.

Corresponding author

Correspondence to A. M. Varizhuk.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors. Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Abbreviations: COVID-19, coronavirus disease 2019; CVL218, 5 5-fluoro-2-{4-[(methylamino)methyl]phenyl}-benzofuran-7-carboxamide (Mefuparib); D, dimerization domain; G3BP1/2, Ras-specific GTPase-activating proteins; EC50, half maximal effective concentration; EGCG, epigallocatechin-3-gallate; GCG, gallocatechin-3-gallate; IDR, intrinsically disordered regions; LCT, low critical temperature; LLPS, liquid−liquid phase separation; MAVS, mitochondrial antiviral sensor; PJ34, N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide; RBD1, N-terminal RNA-binding domain 1; RBD2, RNA-binding domain 2; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SR, serine- and arginine-rich segment; TRS, transcription-regulating signal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svetlova, Y.I., Pavlova, Y.I., Aralov, A.V. et al. Condensates of SARS-CoV-2 Nucleoprotein on Viral RNA and Their Small Molecule Modulators (A Review). Russ J Bioorg Chem 49, 917–929 (2023). https://doi.org/10.1134/S1068162023050229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023050229

Keywords:

Navigation