Skip to main content
Log in

Investigation of the Interaction between Nilotinib and Alpha-Lactalbumin by Spectroscopic Methods and Docking Studies

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The interaction of Nilotinib (NIL) with alpha lactalbumin (α-LA) were studied by spectrofluorimetry, UV-Vis spectroscopy, circular dichroism (CD) and molecular modeling methods. Static quenching procedure fluorescence spectroscopy revealed that the fluorescence quenching of α-LA by NIL was the reason of formation of complex) NIL–α-LA. Fluorescence, UV-Vis, and CD spectra of NIL–α-LA complex showed that the conformation of α-LA has been changed in the presence of NIL. Based on the fluorescence quenching analyses the binding constant is calculated which is (467.73 × 104 M–1 at 298 K) and number of ligand-binding site is equal to one then the thermodynamic parameters of this complex are (ΔG = –33.011 kJ mol−1, ΔS = –80.005 J mol−1 K−1; ΔH = −157.70 kJ mol−1) at 298 K which were computed by using van’t Hoff equation and revealed that the reaction between ligand and protein is spontaneous and hydrogen bonding and van der Waals forces played a key role in the binding of NIL to α-LA. The results of molecular docking investigations have good agreement with the results of fluorescence spectroscopy studies. The molecular dynamic simulation (MDS) showed that free α-LA and the NIL–α-LA complex reached equilibration after 20 ns according to monitoring their root mean square deviation (RMSD). Finally, analyzing the root mean square fluctuations (RMSF) show that interaction of NIL with α-LA did not cause a significant conformational change in α-LA during the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Baronea, G., Moloney, C., O’Reganb, J., Alan, L.K., and O’James A., J. Food Compos. Anal., 2020, vol. 92, article ID 103546. https://doi.org/10.1016/j.jfca.2020.103546

    Article  CAS  Google Scholar 

  2. Belatik, A., Kanakis, C., Hotchandani, S., Tarantilis, P., Polissiou, M., and Tajmir-Riahi, H., J. Biomol. Struct. Dyn., 2012, vol. 30, pp. 437–447. https://doi.org/10.1080/07391102.2012.682209

    Article  CAS  PubMed  Google Scholar 

  3. Markus, C.R., Olivier, B., Panhuysen, G.E., Van der Gugten, J., Alles, M.S., Tuiten, A., Westenberg, H.G., Fekkes, D., Koppeschaar, H.F., and de Haan, E., Am. J. Clin. Nutr., 2000, vol. 71, pp. 1536–1544. https://doi.org/10.1093/ajcn/71.6.1536

    Article  CAS  PubMed  Google Scholar 

  4. Al-Hanish, A., Stanic-Vucinic, D., Mihailovic, J., Prodic, I., Minic, S., Stojadinovic, M., Radibratovic, M., Milcic, M., and Velickovic, T.C., Food Hydrocoll., 2016, vol. 61, pp. 241–250. https://doi.org/10.1016/j.foodhyd.2016.05.012

    Article  CAS  Google Scholar 

  5. Fitz Gerald, R.J., Murray, B.A., and Walsh, D.J., J. Nutr., 2004, vol. 134 pp. 980–988. https://doi.org/10.1093/jn/134.4.980S

    Article  Google Scholar 

  6. Jahanshahtalab, M., Kamshad, M., Rezaei, S., Beigoli, S., Sharifi Rad, A., Ehrzad, J., Khashkhashi Moghadam, S., Mokaberi, P., Gharebaghi, S., Saberi, M.R., Chamani, J., J. Iran. Chem. Soc., 2019, vol. 16, pp.1311–1326. https://doi.org/10.1007/s13738-019-01608-3

    Article  CAS  Google Scholar 

  7. Mohammadi, F. and Moeeni, M., J. Funct. Foods, 2015, vol. 12, pp. 458–467. https://doi.org/10.1016/j.jff.2014.12.012

    Article  CAS  Google Scholar 

  8. Bagheri, F. and Fatemi, M.H., Russ. J. Bioorg. Chem., 2021, vol. 47, pp. 864–873. https://doi.org/10.1134/s1068162021040038

    Article  CAS  Google Scholar 

  9. Frank, J. and Luo, A.C., J. Am. Pharm. Assoc., 2012, vol. 52, pp. 86–94. https://doi.org/10.1331/JAPhA.2012.10139

    Article  Google Scholar 

  10. Spencer, J.P., Gonzalez III, L.S., and Barnhart, D., Am. Fam. Physician., 2001, vol. 64, pp. 119–127.

    CAS  PubMed  Google Scholar 

  11. Tanaka, C., Yin, O.Q.P., Sethuraman, V., Smith, T., Wang, X., Grouss, K., Kantarjian, H., Giles, F., Ottmann, O.G., Galitz, L., and Schran, H., Clin. Pharmacol. Ther., 2012, vol. 52, pp. 197–203 https://doi.org/10.1038/clpt.2009.208

    Article  CAS  Google Scholar 

  12. Meyer, B. and Peters, T.A., Chem. Int., 2003, vol. 42, pp. 864–890. https://doi.org/10.1002/anie.200390233

    Article  CAS  Google Scholar 

  13. Saad Tayyab, S., Izzudin, M.M., Zahirul Kabir, Md., Feroz, S.R., Tee, W.V., Saharuddin, B.M., and Alias, Z., J. Photochem. Photobiol., 2016, vol. 162, pp. 386–394. https://doi.org/10.1016/j.jphotobiol.2016.06.049

    Article  CAS  Google Scholar 

  14. Quintas-Cardama, A. and Cortes, J., Drugs Today (Barc.), 2007, vol. 43, p. 691. https://doi.org/10.1358/dot.2007.43.10.1122218

    Article  CAS  Google Scholar 

  15. Saglio, G., Kim, D.-W., Issaragrisil, S., Le Coutre, P., Etienne, G., Lobo, C., Pasquini, R., Clark, R.E., Hochhaus, A., Hughes, T.P., Gallagher, N., Hoenekopp, A., Dong, M., Haque, A., Larson, R.A., and Kantarjian, H.M., Engl. J. Med., 2010, vol. 362, pp. 2251–2259. https://doi.org/10.1056/NEJMoa0912614

    Article  CAS  Google Scholar 

  16. Yanjun, Sh., Hongyan, L., Min X., Zhenpeng, L., Guoqiang, X., Liang H., and Zhengzhi, Z., Spectrochim. Acta A, 2012, vol. 87, pp. 251–257. https://doi.org/10.1016/j.saa.2011.11.048

    Article  CAS  Google Scholar 

  17. Zahirul Kabir, M.D., Mukarramb, A.K., Mohamad, S.B., Alias, Z., and Tayyab, S., J. Photochem. Photobiol. B: Biol., 2016, vol. 160, pp. 229–239. https://doi.org/10.1016/j.jphotobiol.2016.04.005

    Article  CAS  Google Scholar 

  18. Mousavi, S.F. and Fatemi, M.H., Struct. Chem., 2019, vol. 30 pp. 1–12. https://doi.org/10.1007/s11224-018-1178-1

    Article  CAS  Google Scholar 

  19. Danesh, N., Navaee Sedighi, Z., Beigoli, S., Atena Sharifi-Rad, A., Saberi M.R., and Chamani, J., J. Biomol. Struct. Dyn., 2018, vol. 36, pp. 1747–1763. https://doi.org/10.1080/07391102.2017.1333460

    Article  CAS  PubMed  Google Scholar 

  20. Housaindokht, M.R., Chamani, J., Saboury, A.A., Moosavi-Movahedi A.A., and Bahrololoom, M., Bull. Korean Chem. Soc., 2001, vol. 22, pp. 145–148.

    CAS  Google Scholar 

  21. Atena Sharifi-Rad, A., Mehrzad, J., Darroudi, M., Saberi, M.R., and Chamani, J., J. Biomol. Struct. Dyn., 2021, vol. 39, pp. 1029–1043. https://doi.org/10.1080/07391102.2020.1724568

    Article  CAS  PubMed  Google Scholar 

  22. Mokaberi, P., Babayan-Mashhadi, F., Amiri Tehrani Zadeh, Z., Saberi, M.R., and Chamani, J., J. Biomol. Struct. Dyn., 2021, vol. 39, pp. 3358–3377. https://doi.org/10.1080/07391102.2020.1766570

    Article  CAS  PubMed  Google Scholar 

  23. Sadeghzadeh, F., Entezari, A.A., Behzadian, K., Habibi, K., Amiri-Tehranizadeh, Z., Asoodeh, A., Saberi, M.R., and Chamani, J., Protein Pept. Lett., 2020, vol. 27, pp. 1007–1021.

    CAS  PubMed  Google Scholar 

  24. Kamshad, M., Jahanshah Talab, M., Beigoli, S., Sharifirad, A., Chamani, J., J. Biomol. Struct. Dyn., 2018, vol. 37, pp. 2030–2040. https://doi.org/10.1080/07391102.2018.1475258

    Article  CAS  PubMed  Google Scholar 

  25. Mokaberi, P., Reyhani, V., Amiri-Tehranizadeh, Z., Saberi M.R., Beigoli, S., Samandar, F., and Chamani, J., J. Chem., 2019, vol. 43, p. 8132. https://doi.org/10.1039/C9NJ01048C

    Article  CAS  Google Scholar 

  26. Chamani, J. and Moosavi-Movahedi, A.A., J. Colloid Interface Sci., 2006, vol. 297, pp. 561–569. https://doi.org/10.1016/j.jcis.2005.11.035

    Article  CAS  PubMed  Google Scholar 

  27. Maryam Dareini, M., Amiri Tehranizadeh, Z., Marjani, N., Reza Taheri, R., Aslani-Firoozabadi, S., Talebi, A., Nayeb Zadeh Eidgahi, N., Saberi, M.R., and Chamani, J., Spectrochim. Acta A, 2020, vol. 225, article ID 117528. https://doi.org/10.1016/j.saa.2019.117528

    Article  CAS  Google Scholar 

  28. Chamani, J., Moosavi-Movahedi, A.A., Saboury, A.A, Gharanfoli, M., and Hakimelahi, G.H., J. Chem. Thermodyn., 2003, vol. 35, pp. 199–207. https://doi.org/10.1016/S0021-9614(02)00312-9

    Article  CAS  Google Scholar 

  29. Shakibapour, N., Dehghani Sani, F., Beigoli, S., Sadeghian., H., and Chamani, J., J. Biomol. Struct. Dyn., 2019, vol. 37, pp. 359–371. https://doi.org/10.1080/07391102.2018.1427629

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, A.M., Wei, N., Liu, X.F., Wu, M.G., and Xuan, G.S., Russ. J. Bioorg. Chem., 2021, vol. 47, pp. 261–269. https://doi.org/10.1134/S1068162021010283

    Article  Google Scholar 

  31. Sohrabi, T., Hosseinzadeh, M., Beigoli, S., Saberi, M.R., and Chamani, J., J. Mol. Liq., 2018, vol. 256, pp. 127–138. https://doi.org/10.1016/j.molliq.2018.02.031

    Article  CAS  Google Scholar 

  32. Fraiji, L.K., Hayes, M.D., and Werner, T.C., J. Chem. Educ., 1992, vol. 69, p. 424. https://doi.org/10.1021/ed069p424

    Article  CAS  Google Scholar 

  33. Lakowicz, J.R., Principles of Fluorescence Spectroscopy, Lakowicz, J.R., Ed., Boston, 1999.

    Book  Google Scholar 

  34. Eftink, M.R., Fluorescence Quenching Reaction: Probing Biological Macromolecular Structures, Biophysical and Biochemical Aspects of Fluorescence Spectroscopy, Plenum Press, New York, 1991.

    Book  Google Scholar 

  35. Żamojć, K., Bylińska, I., and Wiczk, W., Int. J. Mol. Sci., 2021, vol. 22, p. 885. https://doi.org/10.3390/ijms22020885

    Article  CAS  PubMed Central  Google Scholar 

  36. Wehbi, Z., Pérez, M.D., Sánchez, L., and Pocoví, C., J. Agric. Food Chem., 2005, vol. 53, pp. 9730−9736. https://doi.org/10.1021/jf050825y

    Article  CAS  PubMed  Google Scholar 

  37. Suryawanshi, V.D., Walekar, L.S., Gore, A.H., Anbhule, P.V., and Kolekar, G.B., J. Pharm. Anal., 2016, vol. 6, pp. 56–63. https://doi.org/10.1016/j.jpha.2015.07.001

    Article  PubMed  Google Scholar 

  38. Ross, P.D. and Subramanian, S., Biochemistry, 1981 vol. 20, pp. 3096–3102. https://doi.org/10.1021/bi00514a017

    Article  CAS  PubMed  Google Scholar 

  39. Paul, B.K. Guchhait, N., Photochem. Photobiol. Sci., 2011, vol. 10, pp. 980–991. https://doi.org/10.1016/j.molliq.2018.02.03110.1039/c0pp00309c

    Article  CAS  PubMed  Google Scholar 

  40. Madrakian, T., Bagheri, H., Afkhami, A., and Soleimani, M., J. Lumin., 2014, vol. 155, pp. 218–225. https://doi.org/10.1016/j.jlumin.2014.06.047

    Article  CAS  Google Scholar 

  41. Kaur, J., Application of UV light scattering to detect reversible self-association and aggregation of proteins in solution, Doctoral Dissertation, 2017.

  42. Bratty, M.A., Saudi Pharm. J., 2020, vol. 28, pp. 729–736. https://doi.org/10.1016/j.jsps.2020.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ariga, G.G., Naik, P.N., Chimatadar, S.A., and Nandibewoor, S.T., J. Mol. Struct., 2017, vol. 1137, pp. 485–494. https://doi.org/10.1016/j.molstruc.2016.12.066

    Article  CAS  Google Scholar 

  44. Chamani, J., J. Mol. Struct., 2010, vol. 979, pp. 227–234. https://doi.org/10.1016/j.molstruc.2010.06.035

    Article  CAS  Google Scholar 

  45. Dehghani Sani, F., Shakibapour, N., Beigoli, S., Sadeghian, H., Hosainzadeh, M., and Chamani, J., J. Lumin., 2018, vol. 203, pp. 599–608. https://doi.org/10.1016/j.jlumin.2018.06.083

    Article  CAS  Google Scholar 

  46. Rashidipour, S., Naeeminejad, S., and Chamani, J., J. Biomol. Struct. Dyn., 2016, vol. 34, pp. 57–77. https://doi.org/10.1080/07391102.2015.1009946

    Article  CAS  PubMed  Google Scholar 

  47. Shi, J.H., Chen, J., Wang, J., and Zhu, Y.Y., Spectrochim. Acta A, 2015, vol. 149, pp. 630–637. https://doi.org/10.1016/j.saa.2015.04.034

    Article  CAS  Google Scholar 

  48. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., and Olson, A.J., J. Comput. Chem., 2009, vol. 30, pp. 2785–2791. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Taghipour, P., Zakariazadeh, M., Sharifi, M., Jafar Ezzati Nazhad Dolatabadi, J., Barzegar, A., J. Photochem. Photobiol. B., 2017, vol. 183 pp. 11–15. https://doi.org/10.1016/j.jphotobiol.2018.04.008

    Article  CAS  Google Scholar 

  50. van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., and Berendsen, H.J.C., J. Comput. Chem., 2005, vol. 26 pp. 1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

  51. Chen, A.A. and Pappu, R., J. Phys. Chem. B, 2007, vol. 111, pp. 11884–11887. https://doi.org/10.1021/jp0765392

    Article  CAS  PubMed  Google Scholar 

  52. Bussi, G., Donadio, D., and Parrinello, M., J. Chem. Phys., 2007, vol. 126, p. 14101. https://doi.org/10.1063/1.2408420

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Bagheri or M. H. Fatemi.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

No animals were involved in this work. No human subjects were involved in this work.

Conflict of Interests

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, F., Fatemi, M.H. Investigation of the Interaction between Nilotinib and Alpha-Lactalbumin by Spectroscopic Methods and Docking Studies. Russ J Bioorg Chem 48, 783–792 (2022). https://doi.org/10.1134/S1068162022040057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022040057

Keywords:

Navigation