Skip to main content
Log in

2'OMe Modification of Anti-miRNA-21 Oligonucleotide–Peptide Conjugate Improves Its Hybridization Properties and Catalytic Activity

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Nowadays, application of miRNases—artificial ribonucleases aimed at degradation of noncoding RNAs, in particular, miRNAs—represents one of the novel experimental approaches to inhibit tumorigenesis. miRNases integrate in their structure an addressing oligonucleotide, which provides specific binding with miRNA target, and a catalytic group, which promotes cleavage of the RNA substrate. Introduction of chemical modifications to the oligonucleotide domain of miRNases in the region that is complementary to miRNA may significantly increase the hybridization properties and nuclease resistance of this type of compound. However, the influence of such structural changes to the ribonuclease activity of miRNases remains unclear. In this work, to investigate the effect of 2'OMe modifications on the activity of miRNases, we synthesized two types of anti-miRNA-21 conjugates of the peptide [(ArgLeu)2Gly]2 and hairpin oligonucleotides in which 14-mer binding region to the miRNA target was fully or partially modified. It is shown that the introduction of 2'OMe modifications promotes a considerable increase in the affinity of miRNases to miRNA-21 but does not change significantly their nuclease resistance. Full modification of conjugates in the region that is complementary to miRNA negatively affects their ribonuclease activity, whereas partial introduction of 2'OMe nucleotides considerably enhances the cleavage activity of miRNases, which leads to a substantial decrease in the proliferation rate and migration potential of tumor cells, which are determined by the miRNA-21 expression.

Keywords: oligonucleotide–peptide conjugates, oncogenic miRNA, miRNA-21, 2'OMe modification, human epidermoid carcinoma KB-8-5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zamaratski, E., Pradeepkumar, P.I., and Chattopadhyaya, J., J. Biochem. Biophys. Methods, 2001, vol. 48, pp. 189–208.

    Article  CAS  Google Scholar 

  2. Patutina, O.A., Bichenkova, E.V., Miroshnichenko, S.K., Mironova, N.L., Trivoluzzi, L.T., Burusco, K.K., Bryce, R.A., Vlasov, V.V., and Zenkova, M.A., Biomaterials, 2017, vol. 122, pp. 163–178.

    Article  CAS  Google Scholar 

  3. Gaglione, M., Milano, G., Chambery, A., Moggio, L., Romanelli, A., and Messere, A., Mol. BioSyst., 2011, vol. 7, pp. 2490–2499.

    Article  CAS  Google Scholar 

  4. Danneberg, F., Ghidini, A., Dogandzhiyski, P., Kalden, E., Stromberg, R., and Gobel, M.V., Beilstein. J. Org. Chem., 2015, vol. 11, pp. 493–498.

    Article  CAS  Google Scholar 

  5. Patutina, O.A., Bazhenov, M.A., Miroshnichenko, S.K., Mironova, N.L., Pyshnyi, D.V., Vlassov, V.V., and Zenkova, M.A., Sci. Rep., 2018, vol. 8, p. 14 990.

    Article  Google Scholar 

  6. Mironova, N.L., Pyshnyi, D.V., Shtadler, D.V., Fedorova, A.A., Vlassov, V.V., and Zenkova, M.A., Nucleic Acids Res., 2007, vol. 35, pp. 2356–2367.

    Article  CAS  Google Scholar 

  7. Sunami, T., Kondo, J., Hirao, I., Watanabe, K., Miura, K.I., and Takenaka, A., Acta Crystallogr. D. Biol. Crystallogr., 2004, vol. 60, pp. 90–96.

    Article  Google Scholar 

  8. Patutina, O.A., Miroshnichenko, S.K., Mironova, N.L., Sen’kova, A.V., Bichenkova, E.V., Clarke, D.J., Vlassov, V.V., and Zenkova, M.A., Front. Pharmacol., 2019 (in press).

  9. Malek-Adamian, E., Patrascu, M.B., Jana, S.K., Martinez-Montero, S., Moitessier, N., and Damha, M.J., Org. Chem., 2018, vol. 83, pp. 9839–9849.

    Article  CAS  Google Scholar 

  10. Lennox, K.A. and Behlke, M.A., Pharm. Res., 2010, vol. 27, pp. 1788–1799.

    Article  CAS  Google Scholar 

  11. Choung, S., Kim, Y.J., Kim, S., Park, H.O., and Choi, Y.C., Biochem. Biophys. Res. Commun., 2006, vol. 342, pp. 919–927.

    Article  CAS  Google Scholar 

  12. Meschaninova, M.I., Venyaminova, A.G., Zenkova, M.A., Vlassov, V.V., and Chernolovskaya, E.L., Oligonucleotides, 2010, vol. 20, pp. 297–308.

    Article  Google Scholar 

  13. Dowler, T., Bergeron, D., Tedeschi, A.L., Paquet, L., Ferrari, N., and Damha, M.J., Nucleic Acids Res., 2006, vol. 34, pp. 1669–1675.

    Article  CAS  Google Scholar 

  14. Laursen, M.B., Pakula, M.M., Gao, S., Fluiter, K., Mook, O.R., Baas, F., Langklaer, N., Wengel, S.L., Wengel, J., Kjems, J., and Bramsen, J.B., Mol. Biosyst., 2010, vol. 6, pp. 862–870.

    Article  CAS  Google Scholar 

  15. Miroshnichenko, S.K., Patutina, O.A., Burakova, E.A., Chelobanov, B.P., Fokina, A.A., Vlassov, V.V., Altman, S., Zenkova, M.A., and Stetsenko, D.A., Proc. Natl. Acad. Sci. U. S. A., 2019, vol. 116, pp. 1229–1234.

    Article  CAS  Google Scholar 

  16. Rait, V.K. and Shaw, B.R., Antisense Nucleic Acid Drug. Dev., 1999, vol. 9, pp. 53–60.

    Article  CAS  Google Scholar 

  17. Damha, M.J. and Ogilvie, K.K., Methods Mol. Biol., 1993, vol. 20, pp. 81–114.

    CAS  PubMed  Google Scholar 

  18. Williams, A., Staroseletz, Y., Zenkova, M.A., Jeannin, L., Aojula, H., and Bichenkova, E.V., Bioconjugate Chem., 2015, vol. 26, pp. 1129–1143.

    Article  CAS  Google Scholar 

  19. Silberklang, F., Gillum, A.M., and Rajbhandary, U.L., Methods Enzymol., 1979, vol. 59, pp. 58–109.

    Article  CAS  Google Scholar 

  20. Donis-Keller, H., Maxam, A.M., and Gilbert, W., Nucleic Acids Res., 1977, vol. 4, pp. 2527–2538.

    Article  CAS  Google Scholar 

  21. Vlassov, A.V., Vlassov, V.V., and Giege, R., Dokl. Akad. Nauk, 1996, vol. 349, pp. 411–413.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to M.I. Meshchaninov for the synthesis of oligonucleotides and miRNA-21 and A.V. Vladimirov for help in work with the tumor cell culture.

Funding

This study was supported by the Russian Science Foundation (project no. 19-14-00250) and the basic budgetary financing project no. AAAA-A17-117020210024-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Patutina.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Statement on the Welfare of Animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by M. Batrukova

Corresponding author: phone: +7(383) 363-51-61, fax: +7(383)363-51-53; e-mail: patutina@niboch.nsc.ru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miroshnichenko, S.K., Amirloo, B., Bichenkova, E.V. et al. 2'OMe Modification of Anti-miRNA-21 Oligonucleotide–Peptide Conjugate Improves Its Hybridization Properties and Catalytic Activity. Russ J Bioorg Chem 45, 803–812 (2019). https://doi.org/10.1134/S1068162019060281

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162019060281

Navigation