Skip to main content
Log in

Synthesis and characterization of polysialic acid/carboxymethyl chitosan hydrogel with potential for drug delivery

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

A novel hydrogel was prepared from polysialic acid (PSA) and carboxymethyl chitosan (CMCS) using glutaraldehyde as the cross-linking agent. The resulting PSA–CMCS hydrogel exhibited pH sensitivity, in which the swelling ratio under acidic conditions was higher than those under neutral or alkaline conditions. The swelling ratio of PSA–CMCS hydrogel at equilibrium depended on the medium pH, the cross-linking agent concentration, and the ratio of PSA to CMCS (w/w). Bovine serum albumin (BSA) and 5-fluorouracil (5-FU) were used as model drugs to prepare hydrogel delivery systems. The loading efficiencies of the hydrogel for BSA and 5-FU were 26.25 and 36.74%, respectively. Release behaviors of BSA and 5-FU were influenced by the pH. MTT assays confirmed that PSA–CMCS hydrogel has no cytotoxicity toward the NIH-3T3 cell line; in fact, the 100% aqueous extract of the PSA–CMCS hydrogel enhanced cell growth. These results suggest that PSA–CMCS hydrogel may be a promising pH-sensitive delivery system, especially for hydrophobic chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

CMCS:

carboxymethyl chitosan

GA:

glutaraldehyde

5-FU:

5-fluorouracil

PSA:

polysialic acid

RGR:

relative growth rate

References

  1. Barry, G.T. and Goebel, W.F., Nature, 1957, vol. 179, pp. 206–211.

    Article  CAS  PubMed  Google Scholar 

  2. Zheng, Z.Y., Wang, S.Z., Li, G.S., Zhan, X.B., Lin, C.C., Wu, J.R., and Zhu, L., Appl. Microbiol. Biotechnol., 2013, vol. 97, pp. 2405–2412.

    Article  CAS  PubMed  Google Scholar 

  3. Gregoriadis, G., Fernandes, A., Mital, M., and McCormack, B., Cell. Mol. Life Sci., 2000, vol. 57, pp. 1964–1969.

    Article  CAS  PubMed  Google Scholar 

  4. Vimr, E.R., Kalivoda, K.A., Deszo, E.L., and Steenbergen, S.M., Microbiol. Mol. Biol. Rev., 2004, vol. 68, pp. 132–153.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Gregoriadis, G., McCormack, B., Wang, Z., and Lifely, R., FEBS Lett., 1993, vol. 315, pp. 271–276.

    Article  CAS  PubMed  Google Scholar 

  6. Fernandes, A.I. and Gregoriadis, G., Biochim. Biophys. Acta, 1996, vol. 1293, pp. 90–96.

    Article  PubMed  Google Scholar 

  7. Fernandes, A.I. and Gregoriadis, G., Biochim. Biophys. Acta, 1997, vol. 1341, pp. 26–34.

    Article  CAS  PubMed  Google Scholar 

  8. Fernandes, A.I. and Gregoriadis, G., Int. J. Pharm., 2001, vol. 217, pp. 215–224.

    Article  CAS  PubMed  Google Scholar 

  9. Jain, S., Hreczuk-Hirst, D.H., McCormack, B., Mital, M., Epenetos, A., Laing, P., and Gregoriadis, G., Biochim. Biophys. Acta, 2003, vol. 1622, pp. 42–49.

    Article  CAS  PubMed  Google Scholar 

  10. Wu, J.R., Lin, Y., Zheng, Z.Y., Zhan X.B., Lin, C.C., and Shen, Y.Q., Biotechnol. Lett., 2010, vol. 32, pp. 1939–1945.

    Article  CAS  PubMed  Google Scholar 

  11. Ilyushin, D.G., Smirnov, I.V., Belogurov, A.A., Dyachenko, I.A., Zharmukhamedova, T., Novozhilova, T.I., Bychikhin, E.A., Serebryakova, M.V., Kharybin, O.N., Murashev, A.N., Anikienko, K.A., Nikolaev, E.N., Ponomarenko, N.A., Genkin, D.D., Blackburn, G.M., Masson, P., and Gabibov, A.G., Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, pp. 1243–1248.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Maarouf, A.E., Petridis, A.K., and Rutishauser, U., Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 45, pp. 16989–16994.

    Article  Google Scholar 

  13. Bruns, S., Stark, Y., Roker, S., Wieland, M., Dräger, G., Kirschning, A., Stahl, F., Kasper, C., and Scheper, T., J. Biotechnol., 2007, vol. 131, pp. 335–345.

    Article  CAS  PubMed  Google Scholar 

  14. Haile, Y., Berski, S., Dräger, G., Nobre, A., Stummeyer, K., Gerardy- Schahn, R., and Grothe, C., Biomaterials, 2008, vol. 29, pp. 1880–1891.

    Article  CAS  PubMed  Google Scholar 

  15. Bezuglov, V.V., Gretskaya, N.M., Klinov, D.V., Bobrov, M., Shibanova, E.D., Akimov, M.G., Fomina-Ageeva, E.V., Zinchenko, G.N., Bairamashvili, D.I., and Miroshnikov, A.I., Russ. J. Bioorg. Chem., 2009, vol. 35, pp. 320–325.

    Article  CAS  Google Scholar 

  16. Bader, R.A., Silvers, A.L., and Zhang, N., Biomacromolecules, 2011, vol. 12, pp. 314–320.

    Article  CAS  PubMed  Google Scholar 

  17. Greco, F., Arif, I., Botting, R., Fante, C., Quintieri, L., Clementi, C., Schiavon, O., and Pasut, G., Polym. Chem., 2013, vol. 4, pp. 1600–1609.

    Article  CAS  Google Scholar 

  18. Zhang, N. and Bader, R.A., Nano LIFE, 2012, vol. 2, no. 1241003, pp. 1–11.

    CAS  Google Scholar 

  19. Wilson, D.R., Zhang, N., Silvers, A.L., Forstner, M.B., and Bader, R.A., Eur. J. Pharm. Sci., 2014, vol. 51, pp. 146–156.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, T., She, Z., Huang, Z., Li, J., Luo, X., and Deng, Y., Asian J. Pharma. Sci., 2014, vol. 9, pp. 75–81.

    Article  Google Scholar 

  21. Risbud, M.V., Hardikar, A.A., Bhat, S.V., and Bhonde, R.R., J. Control. Release, 2000, vol. 68, pp. 23–30.

    Article  CAS  PubMed  Google Scholar 

  22. Bostan, M.S., Senol, M., Cig, T., Peker, I., Goren, A.C., Ozturk, T., and Eroglu, M.S., Int. J. Biol. Macromol., 2013, vol. 52, pp. 177–183.

    Article  CAS  PubMed  Google Scholar 

  23. Yang, L., Lan. Y., Guo, H., Cheng, L., Fan, J., Cai, X., Zhang, L.M., Chen, R., and Zhou, H., Acta Pharmacologica Sinica, 2010, vol. 31, pp. 1625–1634.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Yi, Y., Xu, S., Sun, H., Chang, D., Yin, Y., Zheng, H., Xu, H., and Lou, Y., Carbohydr. Polym., 2011, vol. 86, pp. 1007–1013.

    Article  CAS  Google Scholar 

  25. Brown, R.E., Jarvis, K.L., and Hyland, K.J., Anal. Biochem., 1989, vol. 180, pp. 136–139.

    Article  CAS  PubMed  Google Scholar 

  26. Nair, K.L., Jagadeeshan, S., Nair, S.A., and Kumar, G.S., Int. J. Nanomed., 2011, vol. 6, pp. 1685–1697.

    CAS  Google Scholar 

  27. Frigerio, N.A. and Shaw, M.J., J. Histochem. Cytochem., 1969, vol. 17, pp. 176–181.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Wu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J.R., Zhan, X.B., Zheng, Z.Y. et al. Synthesis and characterization of polysialic acid/carboxymethyl chitosan hydrogel with potential for drug delivery. Russ J Bioorg Chem 41, 562–567 (2015). https://doi.org/10.1134/S1068162015040135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162015040135

Keywords

Navigation